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Abstract

Classical learning assumes the learner is given
a labeled data sample, from which it learns a
model. The field of Active Learning deals with
the situation where the learner begins not with
a training sample, but instead with resources
that it can use to obtain information to help
identify the optimal model. To better under-
stand this task, this paper presents and analy-
ses the simplified “(budgeted) active model se-
lection” version, which captures the pure explo-
ration aspect of many active learning problems
in a clean and simple problem formulation. Here
the learner can use a fixed budget of “model
probes” (where each probe evaluates the spec-
ified model on a random indistinguishable in-
stance) to identify which of a given set of pos-
sible models has the highest expected accuracy.
Our goal is a policy that sequentially determines
which model to probe next, based on the infor-
mation observed so far. We present a formal
description of this task, and show that it is NP-
hard in general. We then investigate a number
of algorithms for this task, including several ex-
isting ones (eg, “Round-Robin”, “Interval Esti-
mation”, “Gittins”) as well as some novel ones
(e.g., “Biased-Robin”), describing first their ap-
proximation properties and then their empirical
performance on various problem instances. We
observe empirically that the simple biased-robin
algorithm significantly outperforms the other al-
gorithms in the case of identical costs and priors.

1 Introduction

Learning tasks typically begin with a data sample — e.g.,
symptoms and test results for a set of patients, together
with their clinical outcomes. By contrast, many real-world
studies begin with no actual data, but instead with an idea

and a budget — funds that can be used to collect the rele-
vant information. For example, one study has allocated $2
million to develop a system to diagnose cancer subtypes,
based on a battery of tests on collected tissue, each test
with its own (known) costs and (unknown) discriminative
powers [Pol]. Given our goal of identifying the most accu-
rate model, what is the best way to spend the $2 million?
Should we indiscriminately run every test on every tissue,
until exhausting the budget? . . . or selectively, and dynam-
ically, determining which tests to run on which tissue? We
call this general problem budgeted learning.

In that study, the eventual model will be allowed to per-
form tests to identify cancer types. To better understand
the fundamentals of this general problem, we investigate a
simpler “(budgeted) active model selection” variant, where
the tissues are indistinguishable, and the goal is to identify
which single test to apply to all (future) tissues. That is, we
have a fixed set of possible diagnostic tests — “models” —
and the learner’s task is to select exactly one of them. As
above, the learner can work “actively”, sequentially decid-
ing (at learning time) which test should be applied to which
tissue, to help identify which test is better is general.

To simplify our notation, we will view this problem as the
“coins problems”: We are given n (distinguishable) coins
with unknown head probabilities. We are allowed to se-
quentially specify a coin to flip, then observe the outcome
of this flip, but only for a known, fixed number of flips. Af-
ter this trial period, we have to declare a winner coin. Our
goal is to pick the coin with the highest head probability
from among the coins. However, considering the limits on
our trial period, we seek a strategy for coin flipping that, on
average, leads to picking a coin that is as close to the best
coin as possible.

There is a tight relation between active model selection
(i.e., identifying the best coin) and identifying the most dis-
criminative test or feature: the head probability of a coin
is a measure of quality, and corresponds to the discrimina-
tion power (e.g., accuracy) in the feature selection problem.
The “features” may actually be more sophisticated classi-
fiers such as decision trees, with known expected costs but



unknown accuracies. In the latter case however, we are ig-
noring the fact that the different models may share features
and hence be correlated. This active model selection prob-
lem is an abstraction applicable to other scenarios, such
as determining the best parameter settings for a program
given a deadline that only allows a fixed number of runs;
or choosing a life partner in the bachelor/bachelorette TV
show where time is limited. Finally, note that the hard-
ness results and the algorithmic issues that we identify in
this work also apply to the more general budgeted classi-
fier learning problems [LMG03].

The first challenge in defining the budgeted active model
selection problem is to formulate the objective, to obtain
a well-defined and satisfactory notion of optimality for the
complete range of budgets. We do this by assigning pri-
ors over coin quality, and by defining a measure of regret
for choosing a coin as a winner. We describe strategies
(for determining which coin to flip in each situation), and
extend the definition of regret to strategies. The compu-
tational task is then reduced to identifying a strategy with
minimum regret, among all strategies that respect the bud-
get.

We address the computational complexity of the problem,
showing that it is in PSPACE, but also NP-hard under dif-
ferent coin costs. We establish a few properties of opti-
mal strategies, and also explore where some of the difficul-
ties may lie in computing optimal strategies, e.g., the need
for contingency in the strategy, even when all coins have
the same cost. We investigate the performance of a num-
ber of algorithms empirically and theoretically, by defining
and motivating constant-ratio approximability. The algo-
rithms include Interval Estimation and (adapted) Gittin in-
dices [Kae93, BF85], obvious ones such as Round-Robin,
as well as novel ones that we propose based on our knowl-
edge of problem structure. One such algorithm, “Biased-
Robin”, works especially well for the case of identical costs
and priors. The paper also raises a number of intriguing
open problems.

The main contributions of this paper are:
1. Precisely defining the basic active model selection prob-
lem in this space, as a problem of sequential decision mak-
ing under uncertainty.
2. Addressing the computational complexity of the prob-
lem, highlighting important issues both for optimality and
approximability. Empirically comparing a number of obvi-
ous, and not so obvious, algorithms, towards determining
which work most effectively.
3. Providing, in closed-form, the expected regret, under
uniform priors, of an obvious algorithm: Round-Robin
(and variants).

Section 2 defines the coins problem and presents its com-
putational complexity. Section 3 defines the constant-ratio
approximation property, describes the algorithms we study

— both familiar and novel — and explores approximabil-
ity. Section 4 empirically investigates the performance of
the algorithms over a range of inputs and Section 5 dis-
cusses related work, distinguishing this work differs from
related notions, such as bandit problems, experimental de-
sign and on-line learning. For the proofs and derivations,
extended explanations, additional empirical results, and an-
imated algorithms, please see [MLG04].

2 The Coins Problem
We are given:

• A collection of n independent coins, indexed by the set
I, where each coin is specified by a query (flip) cost and a
probability density function (prior) over its head probabil-
ity. The priors of the different coins are independent, and
they can be different for different coins.

• A budget b on the total allowed cost of querying.

We assume the tail and the head outcomes will correspond
to receiving no reward and a fixed reward (1 unit) respec-
tively, at performance tain. We are allowed a trial/learning
period, constrained by the budget, for the sole purpose of
experimenting with the coins, i.e., we do not collect re-
wards in this period. At the end of the period, we are
allowed to pick only a single coin for all our future flips
(reward collection).

Let the random variable Θi denote the head probability of a
coin ci, and let wi(Θi) be the density over Θi. Note that the
densities can change based on the results of the coin flips.
We first address the question of which coin to pick at the
end of the learning period, i.e., when the remaining budget
allows no more flips. The expected head probability of coin
ci, aka the mean of coin ci, is: E(Θi) =

∫ 1

0 θ wi(θ) dθ.
The coin to pick is the one with the highest mean µmax =
maxi∈I E(Θi), which we denote by i∗. The motivation
for picking coin i∗ is that flipping such a coin gives an ex-
pected reward no less than the expected reward obtained
from flipping any other coin.

We can now define the measure of error that we aim to
minimize. Let imax be a coin with the highest head prob-
ability, and let Θimax

= Θmax = maxi∈I Θi, be the
random variable corresponding to the head probability of
imax. For example, in case of two coins with Θ1 = 0.1
and Θ2 = 0.4, Θmax = 0.4. In general, as these Θi are
random variables, Θmax is also a random variable, with ex-
pectation E(Θmax) =

∫

~θ
(maxi∈I θi)

∏

i wi(θi) d~θ. For
example, given n coins drawn with uniform priors, we ob-
serve E(Θmax) = n

n+1 [MLG04]. The (expected) regret
from picking coin ci is then E(r(i)) = E(Θmax − Θi) =
E(Θmax) − E(Θi), i.e., the average amount by which
we would have done better1 had we chosen coin imax

1In the standard bandit framework [BF85] where exploitation
is also important, the term “regret” is commonly used to refer to
a conceptually similar but slightly different quantity. We use the



instead of coin ci. Observe that we minimize regret by
picking coin i∗. Thus the (expected) minimum regret is
E(Θmax) − µmax. Note that the (minimum) regret has an
interesting easy to remember form: it is the difference be-
tween two quantities that differ in the order of taking max-
imum and expectation:

E(Θmax) = E(maxi∈I Θi)
µmax = maxi∈I E(Θi)

2.1 Strategies

Informally, a strategy is a prescription of which coin to
query at a given time point. In general, such a prescription
depends on the objective (minimizing regret in our case),
the outcomes of the previous flips or equivalently the cur-
rent posterior densities over head probabilities (i.e., the cur-
rent belief state), and the remaining budget. Note that after
a flip of coin ci, and observing outcome o, the density over
its head probability is updated using Bayes formula, and the
probability of a head outcome for flipping coin i becomes
E(Θi|o). Equivalently, we simply update the density for
coin i according to the observation, and the expectation is
taken over the current density (see Section 2.3).

A strategy may be viewed as a finite, rooted, directed tree
where each leaf node is a special “stop” node, and each in-
ternal node corresponds to flipping a particular coin, whose
two children are also strategy trees, one for each outcome
of the flip (see Figure 1). We will only consider strategies
respecting the budget, i.e., the total cost of coin flips along
any branch may not exceed the budget. Thus the set S of
strategies to consider is finite though huge: n2b

−1 assuming
unit costs. Associated with each leaf node j of a strategy is
the regret rj , computed using the belief state at that node,
and the probability of reaching that leaf pj , where pj is the
product of the transition probabilities along the path from
root to that leaf. We therefore define the regret of a strat-
egy to be the expected regret over the different outcomes,
or equivalently the expectation of regret conditioned on ex-
ecution of s, or E(r|s):

Regret(s) = E(r|s) =
∑

j∈Tree Leafs pjrj

An optimal strategy s∗ is then one with minimum regret:
s∗ = arg mins∈S Regret(s). Figure 1 shows an optimal
strategy2 for the case of n ≥ 4 coins with uniform priors,
and a budget of b = 3. We have observed that optimal
strategies for identical priors typically enjoy a similar pat-
tern (with some exceptions): their top branch (i.e., as long
as the outcomes are all heads) consists of flipping the same
coin, and the bottom branch (i.e., as long as the outcomes
are all tails) consists of flipping the coins in a Round-Robin
fashion; see Biased-Robin (Section 3.1.3 below).

same term as it best describes the objective in this setting as well.
2Note there always exists an optimal strategy that is determin-

istic. A way to see this is to realize that the coins problem is a
special finite-horizon fully observable MDP (see Section 5).
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Figure 1: The optimal strategy tree for budget b = 3 on identical
uniform priors, with 4 (or more) coins. Top branches correspond
to head outcomes. Some branches terminate early as the coin to
choose (boxed) is already determined.

2.2 The Computational Problem

Our overall goal is to execute flips according to some op-
timal strategy s∗. Three relevant computational problems
are outputting (1) an optimal strategy, (2) the best coin to
flip now (the first action of the optimal strategy), or (3) the
minimum regret. As the optimal strategy may be exponen-
tial in the input size, when we talk about the coins problem
in a formal sense (e.g., Theorem 1), we mean the problem
of computing the first action of an optimal strategy.

2.3 Beta Densities

In our experiments, we will be using the family of Beta
densities to model the density over a coin’s head proba-
bility Θ. This family is particularly convenient for repre-
senting and updating priors [Dev95]. Briefly, a Beta den-
sity is a two-parameter function, B( α1, α2 ) of the form
CΘα1−1(1 − Θ)α2−1, where C is a normalizing con-
stant and, in this paper, α1 and α2 are positive integers.
B( 1, 1 ) correponds to the uniform prior. The density
Θ ∼ B( α1, α2 ) has mean E(Θ) = µ = α1/(α1 + α2),

and standard deviation STD(Θ) =
√

µ(1−µ)
α1+α2+1 . After

a heads (resp. tails) outcome, B( α1, α2 ) is updated to
B( α1 + 1, α2 ) (resp. B( α1, α2 + 1 )). See [MLG04] for
more details and examples.

2.4 Computational Complexity

The coins problem is a problem of sequential decision mak-
ing under uncertainty, and similar to many other such prob-
lems [Pap85], one can verify that it is in PSPACE, as long
as we make the assumption that the budget is bounded by
a polynomial function of the number of coins and density
updates and regret computations given the current densi-
ties of the coins can be computed in PSPACE. Moreover,
if we assume the number of coins n is constant, then the
obvious dynamic program can solve this problem in time
polynomial in the budget (if exponential in n). However, in
general, the problem is NP-hard:



Theorem 1 The coins problem is in PSPACE and NP-
hard [MLG04].

The proof reduces the Knapsack Problem to a special coins
problem where the coins have different costs, and discrete
priors with non-zero probability at head probabilities 0 and
1 only. It shows that maximizing the profit in the Knapsack
instance is equivalent to maximizing the probability of find-
ing a perfect coin, which is shown equivalent to minimizing
the regret. The reduction reveals the packing aspect of the
budgeted problem. It remains open whether the problem is
NP-hard when the coins have unit costs and/or uni-modal
distributions. The next section discusses some difficulties
in computing optimal strategies even in this restricted case,
and explores the related issue of approximability.

3 Problem Structure and Algorithm Design

The following are a few simplifying and somewhat intuitive
properties.

Proposition 2
1. E(Θmax|s) = E(Θmax), therefore, the regret of a strat-
egy s is,

regret(s) = E(Θmax) − E(µmax|s),
where E(Θmax|s) and E(µmax|s) denote respectively the
conditional expectations of max random variable Θmax

and maximum mean µmax, conditioned on the execution
of strategy s (i.e., the expectations over all the outcomes of
executing strategy s).
2. More information cannot hurt: For any strategy s,
E(µmax|s) ≥ E(µmax), therefore regret from using any
strategy s is not greater than the current regret.
3. No need to query useless coins: Assume that under any
outcome (i.e., the execution of any strategy respecting the
budget), there is some coin whose mean is at least as high
as coin ci. Then there exists an optimal strategy tree that
never queries coin ci.

The first property follows from the fact that an expecta-
tion over an expectation does not change the value. Thus,
minimizing regret is equivalent to maximizing the expected
highest mean E(µmax|s), and the latter is often easier to
compute (e.g., see Section 3.1.2). The second and third
properties are established by induction on strategy tree
height, and considering a few special cases. We conclude
that the optimization problem boils down to computing a
strategy that maximizes the expectation over the highest
mean; s∗ = argmaxs∈S{E(µmax|s)}.

It follows that in selecting the coin to flip, two significant
properties of a coin are the magnitude of its current mean,
and the spread of its density (think “variance”), that is how
changeable its density is if it is queried: if a coin’s mean
is too low, it can be ignored by the above result, and if its
density is too peaked (imagine no uncertainty), then flip-
ping it may yield little or no information (the expectation

E(µmax|s) may not be significantly higher than E(µmax)).
However, the following simple, two coin example shows
that the optimal action can be to flip the coin with the lower
mean and lower spread!

Example 1: Assume coin c1 has B( 1, 2 ) prior, and coin c2

has B( 1, 3 ); thus c1 has a higher mean and a lower spread
than c2. But the optimal strategy for a budget of one starts
by flipping c2. (To see why, note that flipping c1 does not
change our decision under either of its two outcomes —
c1 will be the winner — and thus the E(µmax) equals the
current highest mean value of 1/3, while flipping c2 affects
the decision, and the expectation of the µmax given that c2

is queried is slightly higher — 1/4× 2/5 + 3/4× 1/3.)

It would be nice if there was some “local” property of a
coin — ideally a single scalar value — that was sufficient
to identify which coin to flip, at each time step. Unfortu-
nately. . .

Example 2: Context Sensitivity: Suppose you have a
budget of 1 to decide between the two coins, c1 with
Θ1 ∼ B( 1, 1 ) and c2 with Θ2 ∼ B( 5, 3 ), Here, it is
clear that you should flip c1. If this decision was based on
a single number associated with c1 (resp., c2), then adding
a third coin c3 could not change the order between c1 and
c2; and in particular, a final budget of 1 flip would ever be
given to c2. However, this will happen if c3 is distributed
with Θ3 ∼ B( 17, 9 )!

The next example shows that the optimal strategy can be
contingent — i.e., the optimal flip at a given stage depends
on the outcomes of the previous flips.

Example 3: Contingent: With the three unit-cost coins
c1 ∼ B( 1, 1 ), c2 ∼ B( 5, 2 ) and c3 ∼ B( 21, 11 ), and a
budget of b = 2, the optimal strategy is to flip coin 1, and
if the outcome is heads, flip it again. If the outcome is tails,
flip coin 2. It can be verified that the best strategies when
starting with flipping c1, or c2, or c3, give expected highest
means of 0.731, 0.725, and 0.723, respectively.

Note that the examples involve identical costs. These ob-
servations suggest that optimization may remain hard even
in the identical costs case. However, the difference between
the optimal regret and regret of a simple algorithm, which
for example ignores contingency, may not be significant.
We explore approximability and candidate approximation
algorithms in the next subsection.

3.1 Algorithms and Approximability

Consider an algorithm A that given the input, outputs the
next action to execute. We call algorithm A a (constant-
ratio) approximation algorithm if there is a constant ` ∈
[1,∞) (independent of problem size), such that given any
problem instance, if r∗ is the optimal regret for the prob-



lem, the regret r(A) from executing actions prescribed by
A is bounded by ` × r∗. A constant-ratio approximation
is especially desirable, as the quality of the approximation
does not degrade with problem size. Of course we seek an
approximation algorithm (preferably with low `) that is also
efficient (polynomial time in input size). We next describe
a number of plausible algorithms, and explore whether or
not they are approximation algorithms. For an animation
of several of these algorithms, please see [MLG04].

3.1.1 Round-Robin, Random, and Greedy Algorithms

The Round-Robin algorithm simply flips the coins in a
Round-Robin fashion, i.e., flips coin i = (t−1 mod n)+1,
at time t = 1, 2, · · ·. The Random algorithm at each deci-
sion point simply picks a coin uniformly at random and
flips it. These algorithms are plausible algorithms, at least
initially in the trial period, and they are a standard protocol
in clinical trials (e.g., [Pol]). The third algorithm we con-
sider is the Constant-budget algorithm: For a small con-
stant k (independent of n and b), it computes the optimal
strategy for that smaller budget k, and flips the first coin
of such a strategy. (Given the outcome, it then computes
the optimal strategy from this new state, with the decre-
mented budget, etc.) We shall refer to the algorithm as sim-
ply Greedy when k = 1. Perhaps it is not hard to see these
algorithms are suboptimal, but we can say more:

Proposition 3 ([MLG04]) For algorithm A ∈ { Round-
Robin, Random, Constant-Budget }, for any constant `,
there is a problem with minimum regret r∗, on which
r(A) > ` × r∗.

3.1.2 Allocational Algorithms (including SCLA)

An allocational strategy is specified by the number of flips
assigned to each coin. For example, given a budget of 5, an
allocation may specify that coin 1 should be flipped twice,
coin 2 flipped once, and coin 3 twice (and all other coins
0 times). Notice this allocation does not specify when to
flip a coin (any coin with positive allocation may be flipped
first), and it is not contingent. The attraction of allocational
strategies is that they are compactly represented. We also
show that they are efficiently evaluated: the expected high-
est mean of an allocational strategy can be computed in
time polynomial in nb [MLG04]. With an equal allocation
of a flips to every coin (e.g., Round-Robin when b = a n)
and under uniform priors, the expression for the regret (i.e.,
E(Θmax) − E(µmax|s)) further simplifies to:

n

n + 1
−

a
∑

h=0

(h + 1)n − hn

(a + 1)n

h + 1

a + 2
. (1)

In addition to Round-Robin, we also consider an extreme
restricted version of a dynamic allocational strategy, the
single-coin allocational strategy, aka (single-coin) look-
ahead algorithm (SCLA): at each time point, for each coin

ci, the look-ahead algorithm considers allocating all of the
remaining flips to coin ci, computes the expected highest
mean from each single-coin allocation, and flips a coin
that gives the largest expected highest mean. (That is,
given the initial budget of b, it computes the coin to flip;
iSCLA
b = SCLA(b). Given the outcome of this flip, it then

computes, and flips, the coin iSCLA
b−1 = SCLA(b−1), and so

forth.) This computation can be done in polynomial time
— O(n b) at every time point. While this algorithm may
not be an approximation algorithm, with specially designed
non-identical priors [MLG04], we will see empirically that
it performs fairly well.

3.1.3 Biased-Robin

The Biased-Robin algorithm is similar to Round-Robin,
except that it keeps flipping the same coin as long as it
gives heads. Thus, Biased-Robin begins by choosing coin
c1 and flipping it. It keeps flipping the currently chosen
coin until the coin gives a tail outcome, in which case it
chooses the next coin, wrapping around and starting with
coin c1 whenever a flip of coin cn gives a tail outcome. The
Biased-Robin algorithm is inspired by the overall pattern
that we observed in the optimal strategy tree for the case
of identical priors (Figure 1). It is also a generalization
of Robbins’ “play the winner” strategy for two Bernoulli
arms [Rob52, Zel69] (if a success occurs on one arm, the
arm is repeated, while if a failure occurs, then the other
arm is tried), and the same strategy arises when we are
searching for a perfect model (see e.g., [SG95]). How-
ever, Biased-Robin is not optimal, as the optimal strategy
does not follow this pattern completely. Exceptions occur,
for example, when the remaining budget is low [MLG04].
Like Round-Robin, Biased-Robin does not take either the
priors nor the budget into account, and it is any-time.
But, somewhat unexpectedly, we observe empirically that
it does very well.

3.1.4 Interval Estimation

The Interval Estimation algorithm [Kae93] attempts to ac-
count for the uncertainty over the performance of a model
(coin) by flipping the coin that has the highest “reasonably
likely” performance, where reasonably likely performance
is defined as the top of the 95% confidence interval, which
is the sum of the current mean of the coin and a multi-
ple γ = 1.96 of the standard deviation of the distribution
STD(Θ) over the coin’s head probability. At each time
point flip a coin iIE with the highest such confidence inter-
val,

iIE = arg maxi∈I{E(Θi) + γ × STD(Θi)}

(Note the higher the tolerance γ, the more the algorithm
is biased towards coins with high spread over their perfor-
mance, while for γ = 0, the algorithm flips the coin with
current highest mean — i.e., reduces to pure exploitation.)



3.1.5 Gittins Indices

Our “active model selection” problem is obviously related
to the standard, well-studied “Bandit Problem” [BF85]:
you are facing a set of n “one-armed bandits” (aka “slot
machines”), each with some fixed but unknown expected
payoff. At each time, you decide which arm to pull, then
receive a payoff drawn from the output distribution of that
specific bandit. The total reward will be the weighted sum
of these payoffs,

∑

t wt×rt, where rt is the payoff received
at time t and wt is the associated weight. Your goal is to
determine a strategy that will maximize this weighted sum.
A standard model in this framework is the infinite-horizon
discounted-total-reward model, where wt = βt for some
discount β ∈ (0, 1). Under this model, there is an amazing
result: At each time, let P (ci) represent the payoff distri-
bution for bandit (coin) ci; in general, this is conditioned
on the outcomes of its previous results. We can compute a
single real value gβ( P (ci) ) ∈ < for each bandit, called its
“Gittins index”, and know that the optimal action is to pull
the bandit i∗ = arg maxi∈I gβ( P (ci) ) with the largest
value [BF85, Git89]. Note that this gβ( P (ci) ) depends
only on the single bandit (i.e., context independent3), and
is able to incorporate both the “long term” rewards of learn-
ing more about this bandit, and the “immediate reward” of
exploiting this bandit. This value gβ( P (ci) ) corresponds
to the constant-payoff of another “constant-valued” bandit,
which is in a sense equivalent to ci (see [BF85]).

In our situation, with budget b, we may formate the prob-
lem in a discounted framework by setting wt = 0 for
t = 1..b, then wb+1 = 1 followed by wt = 0 for t > b + 1.
Hence, the first b flips are pure exploration (as we do not re-
ceive any reward for these actions), so we can flip the best
coin (using our observations) at time b + 1, Time b + 1 is
pure exploitation. As in the budgeted problem we are not
allowed further exploration, the discounts are set to 0 for
time t > b + 1.

While our reward structure {wt} is significantly different
from the infinite-horizon problem, we can use adapt the
Gittins algorithm to our finite budget case (as in [SM02,
Git89]), and observe how it performs. To do this, we set
the value of the discount β to compensate for the remain-
ing budget: At each time, when the remaining budget is s,
we set the discount βs so that the expected number of flips
is s, that is βs = 1 − 1/s. In our situation, therefore, we
compute the Gittens index gβs

( 〈α1, α2〉 ), for α1 and α2

(corresponding to the state of the coin Θ ∼ B( α1, α2 ))
and remaining budget s. We omit the details of computing
these indices (see [SM02, MLG04]). At each time point,
we choose the coin with the largest Gittins index for the
number of flips s remaining;

iGI = argmax
i

{ gβs
( 〈βi1, βi2〉 ) }

3Unfortunately, no such context independent measure exists in
our setting; see Example 2.

Policy Uses data? Uses budget?
Round Robin No No
Random No No
Greedy Yes No
Biased Robin Yes No
SingleCoinLook Yes Yes
Interval Estim. Yes No
Gittins Yes Yes

Table 1: Summary of Algorithms

3.1.6 Summary

Table 1 summarizes some relevant properties of the algo-
rithms.

4 Empirical Performance

We report on the performance of the algorithms in the im-
portant special case of identical costs and priors. We com-
pute the optimal regret through exhaustive search for the
range of only about n ≤ 10 coins and budget b ≤ 10.
Figure 2(a) shows the performance of the optimal strategy
against some of the other algorithms on uniform priors4.
Note that on uniform priors, we can compare experimental
regret averages on Round-Robin against the exact expecta-
tion given by Equation 1. The performances of look-ahead
and Biased-Robin are very close to optimal. We have made
similar observations on other types of identical priors on
the same problem sizes (e.g., Figure 2(b)). Figure 2(c)–(e)
show the performances with the budget at 40, n = 10. We
computed the regrets at every intermediate time point to il-
lustrate the performance of the algorithms as the budget is
reached.

The Biased-Robin and look-ahead strategies consistently
outperform the others, with look-ahead being the most
time consuming algorithm. The relative difference in
performance increases with priors skewed towards higher
head probabilities (Beta densities B( 5, 1 ) and B( 10, 1 )
in the figure), and with increased n (Figure 2(f); see also
[MLG04]). The reason for the poor performance of Greedy
is simple: due to its myopic property, it often cannot distin-
guish among different flips, and flips an arbitrary coin (the
first coin in our implementation), and thus tends to regu-
larly waste flips. For example, with uniform priors, as soon
as some coin gives a head, a single flip of any coin does
not change the expected highest mean. On the other hand,
while look-ahead simplifies by considering single-coin al-
locations only, it performs well since it takes the whole
budget into account.

Interval Estimation performs poorly especially in the case
of skewed priors (Figure 2(d)). On such priors, Interval

4Each point is the average of at least 1000 trials. Initially in
each trial, every coin’s head probability is drawn from the prior,
and then flipped by the algorithms as requested. Error bars are not
shown for clarity (see [MLG04])
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Figure 2: (a)–(e) The performance of the algorithms on 10 coins. (a)–(b) Compared against optimal, 0 ≤ b ≤ 10, (a) Uniform priors,
B( 1, 1 ). (b) Skewed B( 5, 1 ) (c) Uniform, b = 40 (d) Skewed B( 10, 1 ), b = 40 (e) Skewed B( 1, 10 ), b = 40 (f) Uniform,
n = 30, b = 70



Estimation behaves like Round-Robin: when a coin yields
a few consecutive heads, the algorithm moves to an un-
touched coin, as the upper end of its uncertainty region be-
comes smaller than that of an untouched coin! This obser-
vation suggests that explicitly accounting for uncertainty is
not straightforward, and in particular setting the tolerance
for uncertainty to a constant does not address the problem
adequately. Furthermore, the observation that Interval Es-
timation can behave much like Round-Robin implies that it
is not an approximation algorithm for the case of identical
skewed priors.

While our version of Gittins indices algorithm (handling a
finite budget) is designed for the total reward objective5,
we see that it performs reasonable. Still, it does not ex-
plore sufficiently, and it under-performs the algorithm we
consider best: Biased-Robin. Single-coin look-ahead algo-
rithm is also beaten (Figure 2(f)), for a similar reason: it of-
ten sticks to current best coin, but while a single untouched
coin may not have a good chance of beating the current
best, multiple such untouched coins may [MLG04]. Due
to its performance, efficiency, and simplicity, the Biased-
Robin algorithm is the algorithm of choice among the algo-
rithms we tested. It is open whether it has an approximation
guarantee.

5 Related work

There is a vast literature on sequential decision making,
sample complexity of learning, active learning, and exper-
iment design, all somewhat related to our work; we can
only cite a few here. As noted in Section 3.1.5, our ac-
tive model selection problem is an instance of the general
class of the multi-armed bandit problem [BF85], which
typically involves a trade-off between exploration (learn-
ing) and exploitation (reward accumulation). In our prob-
lem, there is a pure learning phase (determined by a fixed
budget) followed by a pure exploitation instance; that is,
there is no action rewards or costs, except at the final time
point (the regret), where it is a function of the entire be-
lief state (coin densities). In the typical bandit problem,
there is an immediate reward obtained from action exe-
cution, which affects the objective just as the informa-
tion gained does. These differences changes the nature
of the task significantly, and sets it apart from typical fi-
nite or infinite-horizon bandit problems and their analyses
(e.g., [KL00, EDMM02, HS02, ACBFS02]). To the best of
our knowledge (and to our surprise) our budgeted problem
has not been studied in the bandit literature in a computa-
tional framework before6.

Our coins problem is also a special finite-horizon Markov

5In fact, for n = 30, b = 70, and uniform priors, the average
total accumulated reward is respectively 59, 58, 54, and 49 for
Gittins, single-coin look-ahead, Biased-Robin, and Interval Esti-
mation.

6Personal communication with D. Berry of [BF85].

decision problem (MDP) [Put94], but the state space in
the direct formulation is too large to allow us to use stan-
dard MDP solution techniques. While the research on
techniques for solving large MDPs with various forms of
structures show promise (e.g., [Duf02]), we believe that
our problem has special structure that allows for simpler,
more efficient, and more effective algorithms for our spe-
cial case.

This active model selection is very related to standard ex-
perimental design. Much of that work [CV95, BF85] in-
volves a single allocation decision at the start of the test-
ing phase (see Section 3.1.2): e.g., 10 individuals receive
treatment 1, 5 for treatment 2, and 25 for treatment 3.
In that work, the learner (there, “experiment designer”)
will commit to using that specific allocation — here for
all 40 individuals. By contrast, our approach (including
our allocation-bsed approaches) are used only to identify
the next single test to perform; based on its outcome, the
learner then decides what to do next, dynamically.

The coins problem is an instance of active learning and
cost-sensitive learning (e.g., [LMR02, Tur00, GGR02]).
Feature costs in [Tur00, GGR02] refer to costs occur-
ing at classification time, while we are concerned with
costs during the learning phase. Similar to several results
[LMR02, RM01], we show that selective querying can be
much more efficient than a naı̈ve method such as random.
These previous results suggest that Greedy methods are ef-
fective; deeper look-aheads are not used due to a combi-
nation of inefficiency and non-significant gains [LMR02].
However, we observe in our setting that the Greedy method
has poor performance both in theory and in experiments,
while looking deeper pays significant dividends.

This paper considers an abstraction that allows us to obtain
crisp theoretical results and many useful technical insights.
Our related work [LMG03] takes a similar Bayesian ap-
proach and uses similar solution techniques to handle learn-
ing of Naı̈ve Bayes classifiers under a budget. A significant
difference here is in the formulation: here we are select-
ing from among a finite number of models, while there the
objective is to learn the best model. However, that work
shows that the basic algorithmic ideas presented here ex-
tend to yield effective selective querying algorithms in that
context as well.

6 Future Work and Contributions

There are a number of directions for future work, in addi-
tion to the open problems already mentioned. An imme-
diate extension of the problem is to select non-trivial clas-
sifiers. This problem may be formulated in a similar way:
we are presented with n candidate classifiers (imagine deci-
sion trees) with priors over a measure of their performance,
and our task is to declare a winner. A significant additional
dimension in this case is that querying a single feature af-



fects not one but multiple classifiers in general. There are
however “flatter” versions of the classifier problem, such
as learning a Naı̈ve Bayes classifier, in which these depen-
dencies are limited. Our solution techniques more readily
extend to the latter problems [LMG03].

Contributions: We introduced and motivated the active
model selection problem. We investigated the computa-
tional complexity of the problem, and explored the perfor-
mance of a variety of algorithms. Our analyses demon-
strate significant problems with a number of algorithms.
We presented a simple technique that significantly outper-
forms these alternatives.
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