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In the standard supervised learning setting the learner is given a set of labeled
examples and asked to learn a function/model/classifier that can correctly label future
unlabeled test examples. The objective is to minimize a measure of misclassification
error on the future examples (not seen at training time). The set of training labeled
instances/examples is provided in a single batch, and once learned, the test examples
are seen one after another, and the test examples are drawn independently of one
another and follow the same distribution as the distribution used to obtain the labeled
training set.

An example of this is webpage classification of university pages into say depart-
ment page, professor pages, and student pages, etc. At training time, a set of pages
all labeled is given, and the classifier induced takes as input a single page and outputs
the label.

All the following learning frameworks assume additional inputs, resources, or ca-
pabilities for the learner, and offer the potential for reducing costs in labeling data
and/or superior learner accuracy.

1 Active Learning

In typical “pool-based” active learning, the learner also has access to a set of unlabeled
instances, and it can ask a teacher for the label of a small subset of those examples.
The rough objective is to ask as few questions as possible and ramp up the classifier
accuracy as fast as possible. One precise objective would be the learner is given
a budget M, so it can ask for the labels of at most M unlabeled instances. It is
assumed the learner can ask its questions sequentially (ask after finding out about
the label of the previous query). So the problem is to find an algorithm that can
do the best achievable accuracy subject to the budget. For an interesting somewhat
different/experimental way of evaluating active learning algorithms, see [BEYL03].

In the webpage example, an active learning setting would involve the learner being
given a corpus of many unlabeled pages, and it would then ask for the labels of a
small subset of the pages selectively and dynamically.



Other forms of active learning include allowing the learner to construct its own
(synthetic) example. Active learning is also referred to “query learning” in computa-
tional learning theory [Ang92, Gol99] (the focus has mostly been on exact learning
of a concept from a concept class), and also selective sampling (perhaps in vision or
stats literature?). I believe pool-based active learning has had, or appears to have,
much more applications than other models of active learning. I think a first paper on
this model (at least in the learning literature) is [CAL94| (who call it “query filtering”
paradigm: the learner can sample from the instance distribution and decides whether
or not to query the oracle/teacher for the label whenever it samples an instance).

Researchers have shown that active learning can significantly reduce the trainig-
set size rquirements both in theory (e.g., make an unlearnable/intractable learning
problem under the standard model learnable), and in empirical settings. For exam-
ple, Baum shows that using membership queries (with synthetic instances) makes
possible efficient learning of neural nets with 4 hidden units [Bau91], otherwise in-
tractable in theory. However, later work showed that synthesized instances may not
be recognizable/labelable to humans in the task of handwritten character recogni-
tion' [BL92|. Perhaps for this reason, pool-based active learning has been researched
more. In pool-based/query-filtering setting, Freund et al establish the potential for
exponential reduction in the number of labels asked (e.g., with each label query, the
error is halved) as long as certain assumptions are made [FSST97]. The assumptions
are roughly that “information gain” is lower bounded by a constant while the desired
error level has not been reached, where the information gain is the reduction in en-
tropy over the hypothesis class, or roughly reducing the number of possible models
by a half each time a query is made (which implies reduction error by a constant
fraction in their model). They show this property holds for linear linear classifiers.
In mnay empirical studies, the savings are anywhere from requiring half to smaller
fractions depending on the problem domain and desired error level.

Most (pool-based) active learning algorithms are “greedy” in the sense that they
have a (one-step) criterion (eg committee disagreement [SOS92, FSST97], or a mea-
sure of uncertainty of the classifier, or uncertainty sampling [LG94]) and they pick the
instance that optimizes it. The intuition behind uncertainty sampling and commit-
tee disagreement measure is that criterion quickly shrinks down the space of models
that are consistent with the training set. However, they these criteria may suffer
if absolute size of the outliters in the unlabeled set is large (while the proportion
may still be low). In some cases, analytic closed-forms exist for picking the instance
that’s expected to improve the accuracy of the current classifier the most [CGJ96],
and others have explored approximating this criterion [LMR02, RM01]. Could the
learner do better if it knew it could ask 100 questions rather than acting as if it has

1This problem may be ameliorated if one also tried to learn a generative model of the data, but
the if one has enough unlabeled data, synthesizing may not add extra power..



only one more question? See [LMR02] for a discussion, and they observed looking 2
plies deep didn’t improve the active learning significantly (lowered variance over the
accuracy however). In a different active learning problem (in model selection, and
also where feature values are unknown), we observe “looking-deeper” (in the search
tree) is necessary for superior performance [MLG04, LMGO03|.

Other related problems (besides better active learners in various contexts) are
error estimation and/or determining when to stop (say instead of a budget, we want
to stop when we know we can do no better, or it’s not worth the bang for the buck,
or we have reached satisfactory accuracy, etc.) (an application of our recent work
touches on this [MPF]). In general, I think we need to better understand the power
of active learning and its limits in statistical settings (e.g., [CC95, ZO00]), and there
remains a number of empirical and theoretical questions. For example, how is the
effectiveness of active learning related to the number of irrelevant features (or ratio
of relevant to irrelevant). For instance, what if an oracle told you the set of relevant
(necessary and sufficient) features? I am also interested in various ways of giving
hints/feedback to the (active) learner (e.g., not just labels for instances, but also
choosing samples likely to contain positives, and indications of relevancy of features,
see eg [Jon04] for labeling features).

2 Semi-Supervised Learning

I believe semi-supervised learning is mostly used to refer to the following scenario:
the learner has labeled and unlabeled data available, and the question is whether
the learner can do better, e.g., can generalize better to unseen data, by using the
unlabeled data as well as the labeled ones. Typically, one assumes the learner is not
allowed to ask for the labels of the unlabeled instances, though there is at least one
work that explores semi-supervised techniques with limited active learning. One idea
for using unlabeled data is to use them for some form of bootstrapping: e.g., label
(a subset of) the unlabeled instances with the current classifier(s), retrain with the
larger labeled set, and repeat. Another major use of unlabeled data is in estimation
of other aspects of the classifier (eg. its error) and model selection (any other different
uses?). Major semi-supervised techniques/ideas include:

e coTraining: roughly, if you have two feature sets (or two or more classifiers)
that work independently, then each classifier trained on one set can be used to

train the other by labeling those unlabeled instances that it’s most confident
on [BM98|.

e Other bootstrapping methods, such as EM, e.g., [NMTMO00].

e Clustering methods, for example clustering the score of the classifier on the
unlabeled data to choose a better threshold for the classifier.



e Using unlabeled data for model selection, regularization/controlling the com-
plexity of the model, and error estimation in active learning, etc.e.g., [KV95,
SS02, MPF].

See [See01] for a survey on using unlabeled data in semi-suprvised learning.

3 Transduction

The term transduction is credited to Vapnik: in transduction, one has labeled data
and unlabeled data, and the objective is to label the seen unlabeled as best as possible.
So the difference with induction and semi-supervised learning is that the learner gets
to see the instances it’s tested on (like a take-home exam, or cheating..!). So whenever
you get to see the test instances and you optimize/estimate various parameters using
the test data (for example, choosing the threshold for a linear classifier), that’s really
transduction! In the web-page classification example, the learner would be given a
database of the pages (say all the university pages in the world), in which a relatively
small subset is labeled, and is asked to label the remainder as accurately as possible.
Applications include labeling items in a (relatively static) database. (also it may be
possible to use transduction for bootstrapping in semi-supervised learning).

Successful transduction techniques have so far involved some sort of clustering or
graph partitioning: e.g., clustering the instances, and labeling a clusters’ unlabeled
members according to majority label of the labeled instances in that cluster [Joa03,
ZBL*03, DEYMO03]. This assumes we have a reliable similarity metric for clustering
and that the clustering algorithm is appropriate for the learning task as well.

Currently, it appears that the biggest bang for the buck (for the domains tested on
in literature) comes when we have a relatively small set of labeled instances. As the
number of labeled instances grows to more than 10s say, the benefit of transduction
(using current techniques) over pure induction (i.e., just using labeled data to train
the classifier ignoring the unlabeled, and then use the classifier to label the unlabeled)
become negligible. It would be great to quantify when/how much can transduction
help (as a function of complexity of the learning problem, etc., e.g., see [Z000]). My
current feeling is that the current techniques are not robust enough and the range
of their applicability is somewhat limited (so room for more research). However, the
work of El-Yaniv et. al. [DEYMO3] is particularly interesting as they derive pretty
tight bounds on the transductive error. Such bounds are not currently available in
the induction setting. This ability to estimate error better may be another lasting
benefit of transduction over induction.



4 Relational Learning

In one version of relational learning, the learner classifies the instances in “bunches”,
and the instances have relations to one-another in a way that constrains their mu-
tual labelings (eg characters in streams of words in character recognition, or image
segmentation, or the classification of various objects in an image, classification of var-
ious parts before recognizing the whole, etc.). So the learner could in theory use this
extra information, reason with it, and come up with a better overall labeling (e.g.,
[TWAKO03, TGKO03]). Note that the iid assumptions of typical inductive learning
(instances are independent and identically distributed) no longer hold. In another
version of relational learning, the features can be relational, for example [PULP03],
and the challenges include sifting through thousands of relational features to find the
best few features.

In the web-page classification example, the problem may be given in the form of a
directed graph where the labels of vertices affect one another (e.g., faculty pages are
likely to link to research and students pages).

One challenge is that typically relational learning methods are significantly more
demanding computationally than their flat counterparts due to their reasoning com-
ponents. Roth et al[KR97] argue that one should base reasoning (which has often
been intractable except for simplest setting) on learning (moreover on simple flat
propositional and even just linear learning components for the most part). In any
case, the general area of studying the interaction of learning and inference (of which
relational learning is an incarnation) is still a wide open area in many respects. It
should have great impact in the long run.

5 Discussion

Various combinations are possible: eg. active learning for transduction or for rela-
tional learning. The transduction technique of clustering maybe viewed a technique
of relational learning: the label of an instance is not solely determined by the labeled
instances, but its relation (e.g., proximity) to unlabeled instances and their likely
labels as well.

All the above learning settings are promising. They are fairly new and often
poorly understood, and not as robust as their mother: classic inductive learning.
They remain an exciting area of research.
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