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Abstract. Prediction problems with huge numbers of classes are bacpméore common.
While class taxonomies are available in certain cases, we bbserved that simpliat
learning and classification, viadexlearning and related techniques, offers significant effi-
ciency and accuracy advantages. In the PASCAL challengarge+scale hierarchical text
classification, the accuracies we obtained ranked in théhree in all evaluations. We also
found that using committees of a few learned models boostedracy, and observed a
tradeoff between accuracy versus memory and time efficiertug paper is an extension
of our short report paper on the competition, and includesoaff convergence, with a
mistake bound, for a variant of indexing in the two-classisgtfor the separable case.

1 Introduction

Many prediction tasks, in a variety of domains including fexg, [14, 10]), speech, and images
(e.g, [1,7,12]), can be viewed as problems with a huge numberasfsels. We have been de-
veloping techniques for efficient learning of compact dieémative models, omdices for such
many-class task®(g, [10, 11]). An index is a sparse weighted mapping conne&auh feature
to relatively few classes (a sparse weight matrix). We haseodered that index learning has a
number of efficiency and accuracy advantages over oneagestiand hierarchical learning with
linear (two-class) Support Vector Machines (SVMs) [10,. Mg also expect that there remains
significant room for improving the efficiency-accuracy caifer large-scale data sets involving
tens of thousands of classes.

In this paper, we report on the performance of the algorittwasised in the five-month-long
Large-Scale Hierarchical Text Classification PASCAL chiadle, and establish the convergence
of an indexing algorithm in the binary-class setting. Wet fingefly describe the PASCAL chal-
lenge. In that challenge we were given a large multiclasblpro, obtained from crawling ODP
(the Open Directory Project), involving just over 12,008sdes and about 120,000 training in-
stances and 35,000 test instances, all singly labeled (agg ger instance), in each of four tasks.
The tasks differed on the choice of features. The challengklde approached with a variety of
techniques such as nearest neighbors and SVMs. The testyaare made available (without
the labels), so the problem can be viewed as a case of semivésg learning and transduction.
The internal classes that together with the labels form artamy tree were also given, and can
potentially be used for accuracy or efficiency gains. We $eclion the simpler problem of the
inductive learning of a linear weight matrix (or an indexreégarding the taxonomy information
and the internal classes. Thus our methods are “flat” rallzerhierarchical. The index, given an
instance, ranks the classes by the scores they obtain. Bl@fysuch flat learning is, roughly,
to obtain a good ranking of the true label for each instanae eWperimented with several flat
techniques, in particular an OOZ (“ooze”) variant [11] arféssive-Aggressive (PA) variant [3],



on 12 normalized tfidf representation of instances. Bothrapghes obtained competitive accura-
cies, although we found that we needed to relax the efficienogtraints on OOZ for improved
accuracy. Furthermore, we discovered that committeeseotetirned models boosted accuracy.
With small committees of PA-learned models, our accuraciaked first in 5 of 12 evaluation
tracks among 19 participants, and otherwise ranked in {h8.to

00Z and some other indexing algorithms constrain the featuveights to a bounded inter-
val such ad0, 1]. This property makes it easier to dynamically decide whfelat(re-to-class)
edges to keep or drop. Weight dropping is crucial for memaoiy ttme efficiency in the online
setting. In the appendix, we include a proof of convergerfca wariant of OOZ in the two-
class case (a weight-bounded perceptron), and discussgopgiems (generalization to multiple
classes) and connections to previous results.

2 Algorithms

Both OOZ (or Online Optimization of Z [or slack] variables)dPA algorithms keep and update
a weight matrixi¥, where the features correspond to rows, and classes to nel@rlassification
amounts to first scoring the classes. The scores are obtaméiae dot product” W, wherez
denotes the column vector representation of the instanaru(iexperiments: 12-normalized tfidf
representation). The score classbtains,s. can be expressed as the dot product z7 - we,
wherew* is columnc of W (the column oflV corresponding to clas9. The highest-scoring
class (breaking ties arbitrarily}rgmax, s., is the predicted class. OOZ assumes nonnegative
feature values. Both learning algorithms begin with a zeeggivt matrix. We implement the ma-
trix as a sparse indexg., for each featurg’, we keep a list of nonzero weights or connections
(or edges) off (corresponding to nonzero weights in rgiwof the matrix). At the outset, every
feature’s list is empty (the zero matrix). We refer to the tn@mof connections of as the outde-
gree. Both algorithms require several passes over thértgaifata to attain maximum accuracy.
On each pass, we randomly permuted the training instances.

2.1 The OOZ Update

After scoring, lets., denote the score of the true clags OOZ (Figure 1) updates whenever
A # ¢, s > s., — 6, wherec’ denotes another class, afids a desired margin threshold
(6 = 0.005 in reported experiments). For such instances, we referosetlasses with s, >
sc, —0 as the (offending) negative classes. In a nutshell, in awedgate, each active €., positive
valued) featuref removes some weight from a subset of the negative classesannected to,
and adds the deducted weights to the true class connecgootebtw; ., (if wy. = 0, i.e,
not connected, it creates the connection, that is, addsghenrtry). If f is not connected to
any negative class or if insufficient weight is removed, dnsfers some weight from a “free”
(dummy) weight sourcev¢ ., initialized to 1.0 before training begins. The weights aleays
kept nonnegative, so that class scores are nonnegativelga wajor difference from PA). OOZ
also keeps each matrix row further sparse by usingtepights (at most) for each feature during
scoring, and OOZ drops tiny weights (we report performanite v = 100, 500, 1000, and
2000). In an update, for a featurewith valuez ¢, the total amount moved to the true connection
is at mostr 3, thus the score of the true class increases by at @m}ﬁ = [ (as vectors are
12 or normalized) = 0.001 in our experiments.



00Z_Update(z, ¢z, Cx, 8, 3) {
B < min(§/2, 3) I* possibly lower learning rate */

D «—Compute_Deductions, s, — 6, 3, C’w) [* Shift Weights From Negative Connections,

R «— D. /*Risremainders, initialized to D */ and free source */

Vf € x, Shift_ConnectionWeights(f, zs, 8, D, R, c;)  Shift_ConnectionWeights(f, zy, r, D, R, cz) {
} boost «— 0.

[* process the connected offending concepts */

Compute_Deductionsf,smin, 3, Cz) { loop overc € C, wherew;s . > 0and R(c) > 0 {

Y —0,D«—0./*Disamap */ If ris O, break the loop.

Ve € Co, if $¢ > Smin, Y «— Y U{(c, s¢)}, D(c) < 0 * Until no more allowance*/

s« Sorted scores inY’. /* an array in decreasing order */  h < min(R(c)/xs, ws.c, x5 D(c),T)

cum «— 0,n «— 1,5 < 0. boost < boost + h, w¢,c «— wyrc—h

loop while (cum < 3) { /* update deduction values */ R(c) «— R(c) —hzfy, r—1r—nh
A «— 3 —cum
if (1 <k) A « min(A, s[i] — s[i + 1]) * deduct from free weight src */
Ve, s¢ > sli+ 1], D(c) « D(c) + £ boost «— min(wy,c,,r) + boost
cum «—cum+An—n+1i—i+1 Wi e, < Wi, + boost

} }

return D

}

Fig. 1. Pseudo-code for OOZ and its subroutines. OOZ first shiftghteifrom offending negatives and
then the free “dummy” source to the true positive weight., . Initially, wy ., = 1.0.

The maximum amount to deduct from each negative class is diy¢he function
conput e_deduct i ons (and explained in [11]). The parametemwas set to 15 (at most 15
negative classes to deduct from). The smaller the pararhgtiee faster and simpler the update,
but accuracy slightly degrades. The presented variant af @@lso somewhat simpler than the
one given in our prior work [11], and in particular this vensideducts from the free sourager
deducting from the negatives, which led to better geneatitin (less overfitting) when multiple
passes are involved.

In the Appendix, we show that an OOZ variant converges in tharg-class setting, given
that there exists a perfect separator, while the generdiatasls setting remains open. The proof
is via showing reduction in Euclidean distance to the sdépaegdter each update.

2.2 The Passive Aggressive (PA) Update

While OOZ focuses on each feature in updating, the rows ofvdight matrixiV, PA is best
viewed as working on class prototypes, or the columnB/ofFigure 2). Here each categoty
is associated with the column weight vectef (columnc of W) called itsprototype The score
classc obtains, can be expressed as the dot progluet 27 - w*.

The original PA algorithm [3] learns the category prototyp@n online manner by solving
the following constrained optimization problem:

1
Wii1 = argmin 3 |w —wi||> st L(w;(x,¢)) = 0. 1)



PA-ll-Update(z, ¢z, C) {
If hingeloss£ =1 — s¢, + s > 0, wheres,, = maxcxc, Sc, an update is performed:

1%]1%+ 5%
Ccx

Update category prototypes:w,%, = w;* + 7X, w?’+1 = wf/ —TX

}

Fig. 2. The PA-Il Update variant (after [3])C is an aggressiveness parametér=£ 1 in our experiments,
and||x||?> = 1 with our 12 normalization).

The PA algorithmpassivelyaccepts a solution whose hinge loss is zero, whilggijres-
sivelyforces the new prototype vector to stay as close as possilte tone previously learned.
Here the hinge loss is determined by the largest violatiothbyfalse positive and true positive
classes, as shown in Fig. 2. Note that the hinge loss is pesitiless the classification outcome
exceeds anarginof 1. The solution of the above optimization problem can henfbusing the
Lagrangian method, and this leads to the update shown irRFNote that in each update, only
two prototypes are updated, which makes the update stepesimp

To handle the problem of noise in the training instances,Rid and PA-1l variants add
slack termsC¢ and C¢£? in the optimization function in Equation 1 (similar to that $VM),
respectively (and apply a more lenient constrainK &, £ > 0). We adopt the PA-II variant
which showed the best performance in all our experimentsiriggement an efficient index-
based sparse representation of the prototypes: the ppe®bxpand on-demand during the on-
line training process to dramatically reduce space usage.

We note that the PA algorithm is more efficient in updatingyom¥o prototypes than its
predecessor Multiclass Multilabel Perceptron (MMP) [4bwirever, as a category prototype al-
gorithm, PA needs to evaluate the similarity of an input geetith eachcategory prototype in
both training and prediction. Also, after learning the slpsototypes (and hence the weight ma-
trix W) are not sparse (we will investigate sparsification as a sascale up the PA algorithm
in the experiments section). In the many-class learniningetwith tens of thousands of cate-
gories), PA is less efficient than an index-based learninthatesuch as OOZ (which updates
active features with only limited fan-outs).

2.3 Strategies for Improving Categorization Accuracy

In the previous sections, we focused our attention on omdiaming algorithms for multi-class
learning. In this section, we present several techniquegtscdin improve the categorization per-
formance in the many class setting.

We first note that it is often necessary to run the online egralgorithm for several passes
to reach highest accuracy. In the case of PA (and to an exted) Qhis is in part because only
two prototypes are updated per instance, and/or the learate maybe small. It may therefore
be necessary to promote the true positives or demote the falsitives with several update
operations (achieved in several passes).

Second, we take advantage of the fact that committee leanain generally help to reduce
the variance in prediction. Online learning algorithmsitglly learn slightly different models
when the training instances are presented in differentrerd®r both OOZ and PA, observing
two instances in different orders can lead to different tpdehaviors and ultimately different



Algorithm 1 Committee learning.

Input: Size of committee’; number of training passeg; training problem{ (x;, Y; }1—;.
1: Feature normalization (e.g. usih@i- i df normalization scheme).

2: for j «— 1toJ do

Permute instances using random seedis, .., ir) = Per m((1, ..T); s7).

4 forp«— 1toPdo

5: M;p) «— Onl i ne_Conponent _Lear ner (M](”*l),{(xit,l/;t}thl)
6: end for

7: end for

Output: A committee of trained modeISM](P)};’:1

models. In particular, we noticed that the class predistiointhe learned models differed from
one pass to another for both OOZ and PA (see experiment®8&)tiThe variation in ranking is
not unexpected, specially when so many classes are ranketkfdre, we used the models after
certain passes to form a committee (see Algorithm 1). Weraxgated with several aggregation
strategies for committee prediction:

J
Cmaj(x) = argmax Y I[M{")(x) = ¢|  (plain majority vote) )
c J=1
Crmin(X) = JV[Z-(P) (x), wherei = arg min Freq(]V[;P) (x)) 3)
J

WhereM;P) (x) denotes the class ranked highest (predicted) by model (omittee member)

Jj (after passP), andF'req(c) is the frequency of classin the training set. The first aggregation
strategy is simple majority vote, which we found to signifitg improve accuracy over individ-
ual models. The second strategy is a variation. It is biagedrds the category with the lowest
frequency in training data. We found that this aggregatimategy yields the best results that not
only improves macro F1 over single models or the plain mijdout also (micro) accuracy over
individual models (while underperforming plain majorigrsewhat in accuracy).

Finally, observing that there are about 10% of the trainmsfcinces with categories appearing
less than 10 times in the training data, we experimented tivithapproach of oversampling the
instances from rare categories, a common strategy in dpaiith the class imbalance problem.
We found that this yields significant improvement of macrodspecially in the earlier passes,
meanwhile it retains similar accuracy. The peak of the aamuand macro F1 however in later
passes is not as high when compared to no over-sampling. Welesd only once in the very
begining. Resampling at the beginning of each pass and sdin@pling procedures may improve
results. We leave this as an option when early convergerumsised.

3 Data and Experiments

The distribution of ODP categories was highly skewed as tisnothe case in many real world
large scale text categorization problems. While the averagnber of instances per class is 10,
the most frequent class had almost 3000 instances. The p@dsses (top 20% in terms of
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Fig. 3. (a) Accuracy of PA after each pass for task 1, reaching a maximof 0.46. (b) Accuracy of OOZ
under four max degreé settings:d = 3000, 2000, 1000, 500, 100 (from top to bottom). Pass durations
differed substantially between PA and OOZ. See Converg&rifficiency subsection.

the number of positive instances), contained 80k instaoaesf the 120k total (thus the 80-20
rule roughly applies here). For task 1, the features weréettms that occurred on the page, and
the average vector size (number of unique terms) was rathgrdt 173, with standard deviation
of 200. The maximum length reached 7k. Vector size goes ugaéir4 as it also includes terms
from category descriptions. Tasks 3 and 4 switched the tatufe types for training and test.
We used tf-idf and I2-normalization for vector representatand did no other vector processing.
Our experiments were conducted on 64bit Linux machineslshauthor using a 24GB memory
and the 2nd using a 32GB with 2.8GHz.

Dry Runs. On the task 1 dry-run data set (smaller set for quick expamis), the PA al-
gorithm obtained accuracy of 0.477 (on validation), redchéhin 10 passes, and OOZ, with
parameter experimentation (choice of margin and learrate) robtained a maximum of 0.488,
reached in 60 passes (and under no degree constraints).dided¢o apply PA in all the tasks
because it performed better than all participants’ entdad because it appeared that we needed
to remove all or most efficiency constraints for OOZ, to reaithilar performance, and OOZ
was parameter sensitive. However, we report on experinten@0Z and PA when trained on
the full training set on task 1 (training and validation set fpgether). We also applied two other
algorithms, MMP [4], and EMA [11], but OOZ and PA, with theadus on hinge-loss reduction,
performed significantly better on this data.

Convergence and EfficiencyFigure 4 illustrates the convergence behavior of the PA-algo
rithm in task 4. The improvement is most significant in thet finsee passes. Then it levels off
(or slightly deteriorate due to overfitting) after 7 pass&imilar observations are made in task 1
(Figure 3(a)). The convergence behavior of O0Z is shown gufg 3(b), whose index is much
smaller than the PA counterpart (reported below). Accuegpears to reach maximum in under
20 training passes. By trading off sparsity (allowing malg@fanouts) and hence training time,
the accuracy of OOZ improves by 1.5% to 2%.



In taskl, the number of edges in the index for OOZ, with 100, ranged from 2.5 million
edges to around 2.9 million edges for all subsequent passesd.= 1000, the size ranged from
6.5 million (at pass 1) to under 6.7 million edges. Hoke 2000, it ranged from 7.2 million
(at pass 1) to just under 8 million edges. For PA, in task1ntimaber of edges ranged from 19
million in pass 1, to 35 million, 39 million, 42 million, and54million, respectively, in passes
4,5, 6, and 7 (thus the number of edges seems to steadily geothere is no constraint on
outdegreef. Thus, the number of edges used by OOZ on task 1 was within 5% %o df PA,
while it underperformed by 2% to 4% in accuracy for the ranpgegrees tested.

Similarly, each pass took progressively longer for PA. Bgktl, the PA passes took respec-
tively 12, 24, 27, 30, 33, and 35 hours. For OOZ, with- 100, the duration was 1 hour for pass
1, increasing to a stable 2.5 hours for passes 10 to 20 Fot 000, they took from 3.4 hours to
around 5.5, and fad = 2000, they took from 4.6 hours to around 7.5. Classification of36k
test instances with the PA models took around 3 hours, whitle @OZ models at pass 14, with
d = 100 andd = 1000 the times were respectively 3 and 13 minutes.

Sparsifying the PA-learned model has the potential of Inglphemory and time efficiency
without losing much on accuracy. Intuitively, some feasumad weights are more important than
others for prediction. We ranked the weights of the PA-ledrweight matrix by their absolute
values. The learned model is sparsified by retaining the tighted edges whose total number
is below the size threshold. The models’ accuracy and treedoe presented in Figure 4(b) for
task 4. Using a sparse model as small as 30% (14 million eddébg original learned model
(48 million edges) does not appear to hurt accuracy. Aftisrploint, however, the model will
quickly decrease in performance. Sparsifying periodjcédir example after each pass, may be
an effective technique. Note that OOZ sparsifies each fedtith every update).

Committee Voting and Other Extensions While the accuracy appears steady after a few
passes, we observed that the classes assigned to testass(eop-ranked classes) differed from
one pass to another for around 10% of the test instancedingt#ine training with different
random seeds also created somewhat more diversity. Tlabilitst of the models learned indi-
cates that there is room for further optimization: the ombigorithms are not converging to the
best model. This instability also suggested the possililitaccuracy improvement by voting
(Section 2.3). With four random starts and indices (modlkgn from 3 passes (5, 6, and 7),
a total of 12 models, we obtained around a 0.5% accuracy boms loss and macro F1 im-
proved as well. This accuracy gain was observed on all falistanstead of taking the majority
voted class, choosing the class with lowest frequency (btgd/by at least one model) yielded
the best macro F1 (while degrading accuracy only slightyrfthe maximum achievable ac-
curacy). Increasing the ensemble size would increase peafice, but as would be expected it
has diminishing returns. Another possibility for improveetformance is the use of EDGE [9],
although our preliminary experiments indicated similarfpemance to committee voting. We
also experimented with over sampling the minority clas¥élile macro F1 improved for the
first few passes, as we mentioned earlier, its accuracy pdakod match that with the original
training problem.

Performance on Other DatasetsIn our previous experiments [11], we had used 12 normal-
ized term frequency vector representation. We noted thedwgment inR; (by at least 2%) in
the chanllenge, using I12-normalized tfidf representatiaieen compared to plain I12-normalized

% The original PA algorithm [3] is not concerned with the matigiss setting and in particular the space
and time efficiency aspects.
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Fig. 4. (a) Accuracy and tree loss of PA after each pass for task 4 eneft data. (b) Performance vs.
percentages of weights removed from PA model on task 4.

newsgroups, 20 classes, 20k instanicgsistry, 104 classes, 10k instances
no tfidf tfidf no tfidf tfidf

R1 | R5 R1 R5 R1|R5| R1 R5

00Z/0.8610.9790.876+005| 0.983 |0.900.950.921 0.959

PA |0.85(0.97|0.87+004 | 0.979 [0.87/0.930.928 0.959

Table 1. Accuracies (“recall” at rank 1R;, and rank 5Rs) on two data sets (average over 10 splits each),
newsgroups and industry (the same experimental set up pPf Bdth PA (PA 1l) and OOZ reach their best
accuracies at around 20 passes on newsgroups (PA with nta@firand learning rate of 0.01, and OOZ
with margin 0.5 and rate of 0.1), and under 10 passes for indtidf representations boost accuracy, and
we see some improved performance compared to [11].

frequency reporesentation. We repeated the experimefitdpbn two of the datasets with the
tfidf refpresenation. The accuracies are shown in Tabl&1dr “recall” at rank 1, is simple
accuracy, and?; is accuracy within top 5). We observe that the use of tfidf koperformance
on these datasets as well (and PA seems to benefit more).

4 Discussion and Conclusions

We investigated two flat techniques, OOZ and PA, for categagiwith more than 10,000 cate-
gories of ODP in the Large-Scale Hierarchical Text Classiitsn PASCAL challenge. Although

forgoing the hierarchical information, the flat algorithmere capable of achieving top-tier clas-
sification results in the challenge while retaining simipjiin algorithmic design and implemen-

tation (consistent with our previous findings [10, 11]). &s® [5], who find flat PA-based tech-
niques competitive with hierarchical versions on sevemalter multiclass problems. In terms
of taxonomy or tree-based losses, some hierarchical metiag show some advantagesq,

[5, 2]), though there remains the complexity of encodinghiggarchy, which may not be a tree
(e.g, the OHSUMED data set), or may not be available.



00z sparsifies the features (drops edges) dynamically gduearning. We found that to
achieve best accuracies on the challenge data, we coduldit'the connectivity of features sub-
stantially during learning (unlike our previous experiefit0]). However, the feature degree and
minimum weight constraints provide knobs with which we canteol the accuracy-efficiency
tradeoff. We provided a convergence proof for an OOZ vaffianthe two-class case. We inves-
tigated the idea of sparsifying the PA-learned model, afténing. For both OOZ and PA, we
observed an accuracy-efficiency trade-off. We exploredresibns, including committee voting,
which improved performance.

We expect there is significant room to push the envelop ofracguefficiency. With increas-
ing number of passes, online algorithms often improve iruesry. However, overfitting also
tends to increase as well. Furthermore, as we saw, the tilgarican also oscillate and not
converge to better models. When batch training is posdiléebalance between over- and un-
derfitting may be controlled better, for improved genewlan. Studying efficient batch index
learning, with appropriate regularized objectives, is@apising future direction. Working toward
a better understanding of the relation between various@noproperties, such as the number of
classes and instances and average vector length, on onednairttie tradeoff between efficiency
and accuracy on the other, should also be fruitful.
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A Convergence of OOZ in the Binary-Class Case

The OOZ algorithm becomes a variant of the perceptron alguarin the case of two classes. The
difference from plain perceptron are: the learned weighgdaunded, and the algorithm accepts
non-negative feature values only. We may refer to this waaa theveight-bounded perceptron
In this variant, each feature keeps two weights, onecfofthe first class) and another fos.
The weights are nonnegative and add to 1.0 (therefore, oightvger feature is sufficient).
An update occurs iff the score of the false class ties or istgrethan the score of the true
class. Whenever a feature updates, it subtracts an amamttfre negative (false) class and
adds it to the true class, unless the feature already has dightvfor the true class.Below,
assumer; is the true class, and lgt denote the learning raté (< 8 < 1), z; the value of
featurei in the instance, and;; be current weight of feature tq. Then in an update, we have
wip — w;1 + min(x; 8,1 —w;1) (@nd symmetrically;s «— w;o — min(x; 5,1 — w;1)). So there

is no change if already;; = 1 (featurei is saturated).

In this section, we show convergence of OOZ (or the weighirded perceptron) in this
binary-class setting, under the assumption of sepanghilitd derive a mistake bound similar
to that for perceptron. We are not aware of any convergersttiia this setting. Generalization
learning bounds (but not convergence bounds) for perceptuith bounded integer weights have
been studied [13]. In that work, it is assumed a perceptronimizing empirical zero-one error
is given, and the problem is deriving bounds on the genexiadia zero-one error.

Assume there exists a separatr (the weights i, w;; also satisfy the boundedness:
Vi,0 < wl < 1w} + wj, = 1), and that the instances are L2 normali2edz? = 1, and
x; > 0, and there is a positive separation: for some> 3 (we show 3 suffices), on any in-
stance obtained via sampling from the distributie), — sz > uf for someu, wheres, is
the score obtained by true class and is the score obtained by the negative class. The proof is
based on showing a reduction in (squared) Euclidean disthatweeri? (our current weight
vector or hypothesis) anid’* after each mistake (and subsequent update). There aresetviea
major proof methods establishing convergence for the gdaiceptron algorithm: showing the
dot-product between the current hypothesis and separat@ases (see.g, [8]), and showing
Euclidean distance decreases (as in [6]). We note thatodile tboounded condition on weights,
the dot-product property does not hold for the bounded-tgigrceptron (simple counter ex-
amples exist).

Without loss of generality, we will focus on the first colunweights toc;) for bothW and
W*, wherein after an update some weights:{qthe true class) must increase. For simplicity,
we writew; for w;1, andW = W (the first column). Le¥’ denote the weight vector after an

4 Equivalently, we could assume each feature keeps one weéghtneter, which ranges [a-1, 1] (the
difference of the weight in the two-weight case).

5 This “saturation” condition is the cause of the differenceoiir convergence analysis from the typical
perceptron convergence argument.
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update. Belowd = ||[W — W*||3, andd’ = ||W' — W*||3 (distances before and after update).

d—d =[|[W =W 3= [[W = W5 =) (w; —w*)* =Y (i —w*;)’

€T IET
=D (wf —w'f 4+ 2uf (i — w))
€T
= Z w? — (w; + min(Bz;, 1 — w;))? 4 2w} (w; + min(Ba;, 1 — w;) — w;)
€T
= Z w? — min(w; + B, 1)% 4 2w} (min(Bz;, 1 — w;)),
1€T

where we hav® < w; < 1,0 < wf <1, Z:z:f = 1, z; > 0, and the separation constraint,
Yoiraws > (O, (1 —wl)) + uB (and we show below, some> 3 suffices), and, because an
update took place, we have the update constdajpi;w; < >, ;(1 — w;).

In general some active features may only be partially “mati&”, i.e., w; + Bx; > 1, or
0 <1-—w; < Bx;. We denote this set byurt(z). The constraints, in the form that we will use,

are:
szwl < sz (1—w;) = 22:0111)1 < le
2 Z T;w; + 2 Z a:lwz<Z:cZ
igpart(x) i€part(x)
2 Z :vzwl<zgvz—2 Z T;W;,
igpart(z) i€part(z)
and foriW*, the separation constraint can be written as:
lew > lel— +uﬁ:>22xzw > ( sz +uf =
2 Z r;w! > (in)—i-uﬂ—Q Z W .
ig€part(z) % i€part(z)
We have
d—d = Z w? — (wy + fr;)? + 2w; (Bz;) + Z w? — 14 2w; (1 — w;)
i€part(z) i€part(x)
=32 Z x? + Z 20z;w! — 2Bxw; + Z w? — 1+ 2w} (1 —w;)
igpart(z) igpart(z) i€part(z)
DI RTOICETIERID DRSS SERTYD DR
igpart(z) i i€part(z) i€part(z)
Z w? — 1+ 2w} (1 —w;)
i€part(z)

=8> > al+uf+ D (2Bwi(wi —w)) +wi — 1+ 2w} (1 —w;))

igpart(x) i€part(x)
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First, we simplify the last sum (into an expression involyifiz; only). Each summand
(28zi(w; — w}) + w? — 1 + 2w} (1 — w;)) is decreasing inv}, as the derivative is not pos-
itive: —20x; + 2(1 — w;) < —208z; + 2Px; = 0, usingl — w; < Bx; (from the assumption that
i € part(x)). Thus we can increase; to 1.0 and decrease the difference, so the lower-bound
for distance becomes:

d—d >-3 Y 2 +uf+ D> (2Bmi(wi—1)+w] —1+2(1—w;))

igpart(z) i€part(z)

=8> > al+uf+ D (2Bwi(wi — 1)+ (w; — )(wi +1) +2(1 — w;))
igpart(z) i€part(z)

=—0 > ai+uf+ D (1—w)(—28z — (wi +1)+2)
igpart(z) i€part(z)

=8> > al+uf+ D (1—wi)(—28z —w;+1)
igpart(x) i€part(x)

> 32 Z 2 +uf? + Z (1 — w;)(—2Bxz;) (dropped a non-negative term)
igpart(x) i€part(x)

> =202 Y ai+uft Do (Bw)(-2Pri) = 267 ) af +uf = (u—2)5%

ig€part(x) i€part(z) i

In the last step, we again used the fact that farpart(z), 1 — w; < Sz, (and that-23z; < 0).
Thus, as long as > 2, we are guaranteed a positive difference. Witk 3, we are guaranteed a
reduction of3? at minimum. Since the maximum distance can|b#|? (the number of features),
we obtain a mistake bound @(|| F'||?/5%). With max, ||z||> = R, instead of 1, we obtain
O(R||F||*/3?), which has a similarity to the mistake bound for percept@aR||W*||?/32).
Given we begin with all 0.5s weight vect@.5(for our case, akin to the zero vector), the number
of mistakes will beO(R||W* — 0.5]|2/3?).

Now, it is interesting that for several simple generalizasi of feature updating to multiple
classes, while keeping the features’ weight®in | (and summing to 1.0), examples exist show-
ing that the Euclidean distance reduction does not hold.ifstance, for the update in which
a feature deducts some weight from the negative class thainel the highest score (if not
connected, then it doesn’t deduct), the following two ntaisiare a counter example:

. (001002---0.02) (05050 -0
W _<o.90.1 0 - 0 )W_(o 0 o.1-~-o>

Here with both (Boolean) features active, untlét ¢; (the true class) obtairis9, while c,
obtains0.2, and other classes obtair02. So the score of, is well separated from others. The
number of classes is sufficiently large so that each row sorts0t UndedV, s., = s., = 0.5,
and all other classes obtain a score0af or 0. So ¢, is the only class with score equal or
exceeding:;. We see here that only row 1 & is modified, and we can verify that even for
small 3, after updatéd?’ will have a larger Euclidean distance.

Thus, two related questions arise immediately: (1) Is thayeneralization of the binary-class
0OO0Z variant to the multiclass case (keeping the connectieights bounded) that satisfies the
Euclidean distance reduction property during an update {faus converges)? (2) Does OOZ or
a close variant converge in the multiclass case?



