
Large-Scale Many-Class Prediction via Flat Techniques

Omid Madani1 and Jian Huang2

1 SRI International, AI Center, Menlo Park, CA 94025, USAmadani@ai.sri.com
2 College of Information Sciences and Technology

Pennsylvania State University, State College PA 16802, USAjhuang@ist.psu.edu

Abstract. Prediction problems with huge numbers of classes are becoming more common.
While class taxonomies are available in certain cases, we have observed that simpleflat
learning and classification, viaindexlearning and related techniques, offers significant effi-
ciency and accuracy advantages. In the PASCAL challenge on large-scale hierarchical text
classification, the accuracies we obtained ranked in the topthree in all evaluations. We also
found that using committees of a few learned models boosted accuracy, and observed a
tradeoff between accuracy versus memory and time efficiency. This paper is an extension
of our short report paper on the competition, and includes a proof of convergence, with a
mistake bound, for a variant of indexing in the two-class setting for the separable case.

1 Introduction

Many prediction tasks, in a variety of domains including text (e.g., [14, 10]), speech, and images
(e.g., [1, 7, 12]), can be viewed as problems with a huge number of classes. We have been de-
veloping techniques for efficient learning of compact discriminative models, orindices, for such
many-class tasks (e.g., [10, 11]). An index is a sparse weighted mapping connectingeach feature
to relatively few classes (a sparse weight matrix). We have discovered that index learning has a
number of efficiency and accuracy advantages over one-versus-rest and hierarchical learning with
linear (two-class) Support Vector Machines (SVMs) [10, 11]. We also expect that there remains
significant room for improving the efficiency-accuracy curve for large-scale data sets involving
tens of thousands of classes.

In this paper, we report on the performance of the algorithmswe used in the five-month-long
Large-Scale Hierarchical Text Classification PASCAL challenge, and establish the convergence
of an indexing algorithm in the binary-class setting. We first briefly describe the PASCAL chal-
lenge. In that challenge we were given a large multiclass problem, obtained from crawling ODP
(the Open Directory Project), involving just over 12,000 classes and about 120,000 training in-
stances and 35,000 test instances, all singly labeled (one class per instance), in each of four tasks.
The tasks differed on the choice of features. The challenge could be approached with a variety of
techniques such as nearest neighbors and SVMs. The test vectors were made available (without
the labels), so the problem can be viewed as a case of semi-supervised learning and transduction.
The internal classes that together with the labels form a taxonomy tree were also given, and can
potentially be used for accuracy or efficiency gains. We focused on the simpler problem of the
inductive learning of a linear weight matrix (or an index), disregarding the taxonomy information
and the internal classes. Thus our methods are “flat” rather than hierarchical. The index, given an
instance, ranks the classes by the scores they obtain. The goal of such flat learning is, roughly,
to obtain a good ranking of the true label for each instance. We experimented with several flat
techniques, in particular an OOZ (“ooze”) variant [11] and aPassive-Aggressive (PA) variant [3],
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on l2 normalized tfidf representation of instances. Both approaches obtained competitive accura-
cies, although we found that we needed to relax the efficiencyconstraints on OOZ for improved
accuracy. Furthermore, we discovered that committees of the learned models boosted accuracy.
With small committees of PA-learned models, our accuraciesranked first in 5 of 12 evaluation
tracks among 19 participants, and otherwise ranked in the top 3.

OOZ and some other indexing algorithms constrain the features’ weights to a bounded inter-
val such as[0, 1]. This property makes it easier to dynamically decide which (feature-to-class)
edges to keep or drop. Weight dropping is crucial for memory and time efficiency in the online
setting. In the appendix, we include a proof of convergence of a variant of OOZ in the two-
class case (a weight-bounded perceptron), and discuss openproblems (generalization to multiple
classes) and connections to previous results.

2 Algorithms

Both OOZ (or Online Optimization of Z [or slack] variables) and PA algorithms keep and update
a weight matrixW , where the features correspond to rows, and classes to columns. Classification
amounts to first scoring the classes. The scores are obtainedvia the dot productxT W , wherex
denotes the column vector representation of the instance (in our experiments: l2-normalized tfidf
representation). The score classc obtains,sc can be expressed as the dot productsc = xT ·wc,
wherew

c is columnc of W (the column ofW corresponding to classc). The highest-scoring
class (breaking ties arbitrarily),argmaxc sc, is the predicted class. OOZ assumes nonnegative
feature values. Both learning algorithms begin with a zero weight matrix. We implement the ma-
trix as a sparse index,i.e., for each featuref , we keep a list of nonzero weights or connections
(or edges) off (corresponding to nonzero weights in rowf of the matrix). At the outset, every
feature’s list is empty (the zero matrix). We refer to the number of connections off as the outde-
gree. Both algorithms require several passes over the training data to attain maximum accuracy.
On each pass, we randomly permuted the training instances.

2.1 The OOZ Update

After scoring, letscx
denote the score of the true classcx. OOZ (Figure 1) updates whenever

∃c′ 6= c, sc′ ≥ scx
− δ, wherec′ denotes another class, andδ is a desired margin threshold

(δ = 0.005 in reported experiments). For such instances, we refer to those classesc′ with sc′ ≥
scx
−δ as the (offending) negative classes. In a nutshell, in everyupdate, each active (i.e., positive

valued) featuref removes some weight from a subset of the negative classes it is connected to,
and adds the deducted weights to the true class connection, denotedwf,cx

(if wf,c = 0, i.e.,
not connected, it creates the connection, that is, adds the list entry). If f is not connected to
any negative class or if insufficient weight is removed, it transfers some weight from a “free”
(dummy) weight sourcewf,c0

, initialized to 1.0 before training begins. The weights arealways
kept nonnegative, so that class scores are nonnegative as well (a major difference from PA). OOZ
also keeps each matrix row further sparse by using topd weights (at most) for each feature during
scoring, and OOZ drops tiny weights (we report performance with d = 100, 500, 1000, and
2000). In an update, for a featuref with valuexf , the total amount moved to the true connection
is at mostxfβ, thus the score of the true class increases by at most

∑

x2
fβ = β (as vectors are

l2 or normalized).β = 0.001 in our experiments.
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OOZ Update(x, cx, C̃x, δ, β) {
β ←min(δ/2, β) /* possibly lower learning rate */
D ←Compute Deductions(k, scx

− δ, β, C̃x)
R← D. /* R is remainders, initialized to D */
∀f ∈ x, Shift Connection Weights(f , xf , xfβ, D, R, cx)
}

Compute Deductions(k,smin, β, C̃x) {
Y ← ∅, D ← ∅. /* D is a map */
∀c ∈ C̃x, if sc > smin, Y ← Y ∪ {(c, sc)}, D(c)← 0
s← Sorted scores inY . /* an array in decreasing order */
cum← 0, n← 1, i← 0.
loop while (cum ≤ β) { /* update deduction values */
∆← β − cum
if (i <k) ∆← min(∆, s[i]− s[i + 1])
∀c, sc > s[i + 1], D(c)← D(c) + ∆

n

cum← cum + ∆, n← n + 1, i← i + 1
}
return D
}

/* Shift Weights From Negative Connections,
and free source */
Shift Connection Weights(f , xf , r, D, R, cx) {
boost← 0.
/* process the connected offending concepts */
loop over c ∈ C, wherewf,c > 0 and R(c) > 0 {
If r is 0, break the loop.
/* Until no more allowance*/
h← min(R(c)/xf , wf,c, xfD(c), r)
boost← boost + h, wf,c ← wf,c − h
R(c)← R(c)− hxf , r ← r − h
}
/* deduct from free weight src */
boost← min(wf,c0 , r) + boost
wf,cx

← wf,cx
+ boost

}

Fig. 1. Pseudo-code for OOZ and its subroutines. OOZ first shifts weights from offending negatives and
then the free “dummy” source to the true positive weightwf,cx

. Initially, wf,c0 = 1.0.

The maximum amount to deduct from each negative class is given by the function
compute deductions (and explained in [11]). The parameterk was set to 15 (at most 15
negative classes to deduct from). The smaller the parameterk, the faster and simpler the update,
but accuracy slightly degrades. The presented variant of OOZ is also somewhat simpler than the
one given in our prior work [11], and in particular this version deducts from the free sourceafter
deducting from the negatives, which led to better generalization (less overfitting) when multiple
passes are involved.

In the Appendix, we show that an OOZ variant converges in the binary-class setting, given
that there exists a perfect separator, while the general multiclass setting remains open. The proof
is via showing reduction in Euclidean distance to the separator after each update.

2.2 The Passive Aggressive (PA) Update

While OOZ focuses on each feature in updating, the rows of theweight matrixW , PA is best
viewed as working on class prototypes, or the columns ofW (Figure 2). Here each categoryc
is associated with the column weight vectorw

c (columnc of W ) called itsprototype. The score
classc obtains, can be expressed as the dot productsc = xT ·wc.

The original PA algorithm [3] learns the category prototypein an online manner by solving
the following constrained optimization problem:

wt+1 = argmin
w

1

2
‖w −wt‖

2
s.t. L(w; (x, cx)) = 0. (1)
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PA-II-Update(x, cx, C) {
If hinge lossL = 1− scx

+ sc′ ≥ 0, wheresc′ = maxc 6=cx
sc, an update is performed:

Let τ = L

‖x‖2+ 1

2C

Update category prototypes:wcx

t+1 = w
cx

t + τx, w
c′

t+1 = w
c′

t − τx
}

Fig. 2. The PA-II Update variant (after [3]).C is an aggressiveness parameter (C = 1 in our experiments,
and‖x‖2 = 1 with our l2 normalization).

The PA algorithmpassivelyaccepts a solution whose hinge loss is zero, while itaggres-
sivelyforces the new prototype vector to stay as close as possible to the one previously learned.
Here the hinge loss is determined by the largest violation bythe false positive and true positive
classes, as shown in Fig. 2. Note that the hinge loss is positive unless the classification outcome
exceeds amarginof 1. The solution of the above optimization problem can be found using the
Lagrangian method, and this leads to the update shown in Fig.2. Note that in each update, only
two prototypes are updated, which makes the update step simple.

To handle the problem of noise in the training instances, thePA-I and PA-II variants add
slack termsCξ andCξ2 in the optimization function in Equation 1 (similar to that in SVM),
respectively (and apply a more lenient constraintL ≤ ξ, ξ ≥ 0). We adopt the PA-II variant
which showed the best performance in all our experiments. Weimplement an efficient index-
based sparse representation of the prototypes: the prototypes expand on-demand during the on-
line training process to dramatically reduce space usage.

We note that the PA algorithm is more efficient in updating only two prototypes than its
predecessor Multiclass Multilabel Perceptron (MMP) [4]. However, as a category prototype al-
gorithm, PA needs to evaluate the similarity of an input vector with eachcategory prototype in
both training and prediction. Also, after learning the class prototypes (and hence the weight ma-
trix W ) are not sparse (we will investigate sparsification as a means to scale up the PA algorithm
in the experiments section). In the many-class learning setting (with tens of thousands of cate-
gories), PA is less efficient than an index-based learning method such as OOZ (which updates
active features with only limited fan-outs).

2.3 Strategies for Improving Categorization Accuracy

In the previous sections, we focused our attention on onlinelearning algorithms for multi-class
learning. In this section, we present several techniques that can improve the categorization per-
formance in the many class setting.

We first note that it is often necessary to run the online learning algorithm for several passes
to reach highest accuracy. In the case of PA (and to an extent OOZ), this is in part because only
two prototypes are updated per instance, and/or the learning rate maybe small. It may therefore
be necessary to promote the true positives or demote the false positives with several update
operations (achieved in several passes).

Second, we take advantage of the fact that committee learning can generally help to reduce
the variance in prediction. Online learning algorithms typically learn slightly different models
when the training instances are presented in different orders. For both OOZ and PA, observing
two instances in different orders can lead to different update behaviors and ultimately different
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Algorithm 1 Committee learning.

Input: Size of committeeJ ; number of training passesP ; training problem{(xt, Yt}
T
t=1.

1: Feature normalization (e.g. usingtf-idf normalization scheme).
2: for j ← 1 to J do
3: Permute instances using random seedsj : (i1, .., iT ) = Perm((1, ..T ); sj).
4: for p← 1 to P do
5: M

(p)
j ← Online Component Learner(M

(p−1)
j , {(xit

, Yit
}Tt=1)

6: end for
7: end for

Output: A committee of trained models{M (P )
j }Jj=1

models. In particular, we noticed that the class predictions of the learned models differed from
one pass to another for both OOZ and PA (see experiments Section 3). The variation in ranking is
not unexpected, specially when so many classes are ranked. Therefore, we used the models after
certain passes to form a committee (see Algorithm 1). We experimented with several aggregation
strategies for committee prediction:

cmaj(x) = arg max
c

J
∑

j=1

I[M
(P )
j (x) = c] (plain majority vote) (2)

cmin(x) = M
(P )
i (x), wherei = argmin

j
Freq(M

(P )
j (x)) (3)

WhereM
(P )
j (x) denotes the class ranked highest (predicted) by model (or committee member)

j (after passP ), andFreq(c) is the frequency of classc in the training set. The first aggregation
strategy is simple majority vote, which we found to significantly improve accuracy over individ-
ual models. The second strategy is a variation. It is biased towards the category with the lowest
frequency in training data. We found that this aggregation strategy yields the best results that not
only improves macro F1 over single models or the plain majority, but also (micro) accuracy over
individual models (while underperforming plain majority somewhat in accuracy).

Finally, observing that there are about 10% of the training instances with categories appearing
less than 10 times in the training data, we experimented withthe approach of oversampling the
instances from rare categories, a common strategy in dealing with the class imbalance problem.
We found that this yields significant improvement of macro F1especially in the earlier passes,
meanwhile it retains similar accuracy. The peak of the accuracy and macro F1 however in later
passes is not as high when compared to no over-sampling. We sampled only once in the very
begining. Resampling at the beginning of each pass and othersampling procedures may improve
results. We leave this as an option when early convergence isdesired.

3 Data and Experiments

The distribution of ODP categories was highly skewed as is often the case in many real world
large scale text categorization problems. While the average number of instances per class is 10,
the most frequent class had almost 3000 instances. The top 2400 classes (top 20% in terms of
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Fig. 3. (a) Accuracy of PA after each pass for task 1, reaching a maximum of 0.46. (b) Accuracy of OOZ
under four max degreed settings:d = 3000, 2000, 1000, 500, 100 (from top to bottom). Pass durations
differed substantially between PA and OOZ. See Convergence& Efficiency subsection.

the number of positive instances), contained 80k instancesout of the 120k total (thus the 80-20
rule roughly applies here). For task 1, the features were theterms that occurred on the page, and
the average vector size (number of unique terms) was rather long at 173, with standard deviation
of 200. The maximum length reached 7k. Vector size goes up fortask 4 as it also includes terms
from category descriptions. Tasks 3 and 4 switched the two feature types for training and test.
We used tf-idf and l2-normalization for vector representation, and did no other vector processing.
Our experiments were conducted on 64bit Linux machines, the1st author using a 24GB memory
and the 2nd using a 32GB with 2.8GHz.

Dry Runs. On the task 1 dry-run data set (smaller set for quick experiments), the PA al-
gorithm obtained accuracy of 0.477 (on validation), reached within 10 passes, and OOZ, with
parameter experimentation (choice of margin and learning rate), obtained a maximum of 0.488,
reached in 60 passes (and under no degree constraints). We decided to apply PA in all the tasks
because it performed better than all participants’ entries, and because it appeared that we needed
to remove all or most efficiency constraints for OOZ, to reachsimilar performance, and OOZ
was parameter sensitive. However, we report on experimentson OOZ and PA when trained on
the full training set on task 1 (training and validation set put together). We also applied two other
algorithms, MMP [4], and EMA [11], but OOZ and PA, with their focus on hinge-loss reduction,
performed significantly better on this data.

Convergence and Efficiency.Figure 4 illustrates the convergence behavior of the PA algo-
rithm in task 4. The improvement is most significant in the first three passes. Then it levels off
(or slightly deteriorate due to overfitting) after 7 passes.Similar observations are made in task 1
(Figure 3(a)). The convergence behavior of OOZ is shown in Figure 3(b), whose index is much
smaller than the PA counterpart (reported below). Accuracyappears to reach maximum in under
20 training passes. By trading off sparsity (allowing more edge fanouts) and hence training time,
the accuracy of OOZ improves by 1.5% to 2%.
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In task1, the number of edges in the index for OOZ, withd = 100, ranged from 2.5 million
edges to around 2.9 million edges for all subsequent passes.Ford = 1000, the size ranged from
6.5 million (at pass 1) to under 6.7 million edges. Ford = 2000, it ranged from 7.2 million
(at pass 1) to just under 8 million edges. For PA, in task1, thenumber of edges ranged from 19
million in pass 1, to 35 million, 39 million, 42 million, and 45 million, respectively, in passes
4, 5, 6, and 7 (thus the number of edges seems to steadily grow,as there is no constraint on
outdegree).3 Thus, the number of edges used by OOZ on task 1 was within 5% to 10% of PA,
while it underperformed by 2% to 4% in accuracy for the range of degrees tested.

Similarly, each pass took progressively longer for PA. For task 1, the PA passes took respec-
tively 12, 24, 27, 30, 33, and 35 hours. For OOZ, withd = 100, the duration was 1 hour for pass
1, increasing to a stable 2.5 hours for passes 10 to 20. Ford = 1000, they took from 3.4 hours to
around 5.5, and ford = 2000, they took from 4.6 hours to around 7.5. Classification of the35k
test instances with the PA models took around 3 hours, while with OOZ models at pass 14, with
d = 100 andd = 1000 the times were respectively 3 and 13 minutes.

Sparsifying the PA-learned model has the potential of helping memory and time efficiency
without losing much on accuracy. Intuitively, some features and weights are more important than
others for prediction. We ranked the weights of the PA-learned weight matrix by their absolute
values. The learned model is sparsified by retaining the top weighted edges whose total number
is below the size threshold. The models’ accuracy and tree loss are presented in Figure 4(b) for
task 4. Using a sparse model as small as 30% (14 million edges)of the original learned model
(48 million edges) does not appear to hurt accuracy. After this point, however, the model will
quickly decrease in performance. Sparsifying periodically, for example after each pass, may be
an effective technique. Note that OOZ sparsifies each feature (with every update).

Committee Voting and Other Extensions. While the accuracy appears steady after a few
passes, we observed that the classes assigned to test instances (top-ranked classes) differed from
one pass to another for around 10% of the test instances. Starting the training with different
random seeds also created somewhat more diversity. The instability of the models learned indi-
cates that there is room for further optimization: the online algorithms are not converging to the
best model. This instability also suggested the possibility of accuracy improvement by voting
(Section 2.3). With four random starts and indices (models)taken from 3 passes (5, 6, and 7),
a total of 12 models, we obtained around a 0.5% accuracy boost. Tree loss and macro F1 im-
proved as well. This accuracy gain was observed on all four tasks. Instead of taking the majority
voted class, choosing the class with lowest frequency (but voted by at least one model) yielded
the best macro F1 (while degrading accuracy only slightly from the maximum achievable ac-
curacy). Increasing the ensemble size would increase performance, but as would be expected it
has diminishing returns. Another possibility for improvedperformance is the use of EDGE [9],
although our preliminary experiments indicated similar performance to committee voting. We
also experimented with over sampling the minority classes.While macro F1 improved for the
first few passes, as we mentioned earlier, its accuracy peak did not match that with the original
training problem.

Performance on Other Datasets. In our previous experiments [11], we had used l2 normal-
ized term frequency vector representation. We noted the improvement inR1 (by at least 2%) in
the chanllenge, using l2-normalized tfidf representations, when compared to plain l2-normalized

3 The original PA algorithm [3] is not concerned with the many-class setting and in particular the space
and time efficiency aspects.
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Fig. 4. (a) Accuracy and tree loss of PA after each pass for task 4 on the test data. (b) Performance vs.
percentages of weights removed from PA model on task 4.

newsgroups, 20 classes, 20k instancesindustry, 104 classes, 10k instances
no tfidf tfidf no tfidf tfidf

R1 R5 R1 R5 R1 R5 R1 R5
OOZ 0.8610.9790.876±005 0.983 0.900.950.921 0.959
PA 0.85 0.97 0.87±004 0.979 0.870.930.928 0.959

Table 1.Accuracies (“recall” at rank 1,R1, and rank 5,R5) on two data sets (average over 10 splits each),
newsgroups and industry (the same experimental set up of [11]). Both PA (PA II) and OOZ reach their best
accuracies at around 20 passes on newsgroups (PA with margin0.05 and learning rate of 0.01, and OOZ
with margin 0.5 and rate of 0.1), and under 10 passes for industry. tfidf representations boost accuracy, and
we see some improved performance compared to [11].

frequency reporesentation. We repeated the experiments of[11] on two of the datasets with the
tfidf refpresenation. The accuracies are shown in Table 1 (R1 or “recall” at rank 1, is simple
accuracy, andR5 is accuracy within top 5). We observe that the use of tfidf boosts performance
on these datasets as well (and PA seems to benefit more).

4 Discussion and Conclusions

We investigated two flat techniques, OOZ and PA, for categorizing with more than 10,000 cate-
gories of ODP in the Large-Scale Hierarchical Text Classification PASCAL challenge. Although
forgoing the hierarchical information, the flat algorithmswere capable of achieving top-tier clas-
sification results in the challenge while retaining simplicity in algorithmic design and implemen-
tation (consistent with our previous findings [10, 11]). Seealso [5], who find flat PA-based tech-
niques competitive with hierarchical versions on several smaller multiclass problems. In terms
of taxonomy or tree-based losses, some hierarchical methods may show some advantages (e.g.,
[5, 2]), though there remains the complexity of encoding thehierarchy, which may not be a tree
(e.g., the OHSUMED data set), or may not be available.
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OOZ sparsifies the features (drops edges) dynamically during learning. We found that to
achieve best accuracies on the challenge data, we couldn’t limit the connectivity of features sub-
stantially during learning (unlike our previous experience [10]). However, the feature degree and
minimum weight constraints provide knobs with which we can control the accuracy-efficiency
tradeoff. We provided a convergence proof for an OOZ variantfor the two-class case. We inves-
tigated the idea of sparsifying the PA-learned model, aftertraining. For both OOZ and PA, we
observed an accuracy-efficiency trade-off. We explored extensions, including committee voting,
which improved performance.

We expect there is significant room to push the envelop of accuracy-efficiency. With increas-
ing number of passes, online algorithms often improve in accuracy. However, overfitting also
tends to increase as well. Furthermore, as we saw, the algorithms can also oscillate and not
converge to better models. When batch training is possible,the balance between over- and un-
derfitting may be controlled better, for improved generalization. Studying efficient batch index
learning, with appropriate regularized objectives, is a promising future direction. Working toward
a better understanding of the relation between various problem properties, such as the number of
classes and instances and average vector length, on one hand, and the tradeoff between efficiency
and accuracy on the other, should also be fruitful.
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A Convergence of OOZ in the Binary-Class Case

The OOZ algorithm becomes a variant of the perceptron algorithm in the case of two classes. The
difference from plain perceptron are: the learned weights are bounded, and the algorithm accepts
non-negative feature values only. We may refer to this variant as theweight-bounded perceptron.
In this variant, each feature keeps two weights, one forc1 (the first class) and another forc2.
The weights are nonnegative and add to 1.0 (therefore, one weight per feature is sufficient).4

An update occurs iff the score of the false class ties or is greater than the score of the true
class. Whenever a feature updates, it subtracts an amount from the negative (false) class and
adds it to the true class, unless the feature already has 1.0 weight for the true class.5 Below,
assumec1 is the true class, and letβ denote the learning rate (0 < β ≤ 1), xi the value of
featurei in the instance, andwi1 be current weight of feature toc1. Then in an update, we have
wi1 ← wi1 +min(xiβ, 1−wi1) (and symmetrically,wi2 ← wi2−min(xiβ, 1−wi1)). So there
is no change if alreadywi1 = 1 (featurei is saturated).

In this section, we show convergence of OOZ (or the weight-bounded perceptron) in this
binary-class setting, under the assumption of separability, and derive a mistake bound similar
to that for perceptron. We are not aware of any convergence result in this setting. Generalization
learning bounds (but not convergence bounds) for perceptrons with bounded integer weights have
been studied [13]. In that work, it is assumed a perceptron minimizing empirical zero-one error
is given, and the problem is deriving bounds on the generalization zero-one error.

Assume there exists a separatorW ∗ (the weights inW ∗, w∗
ij also satisfy the boundedness:

∀i, 0 ≤ w∗
i1 ≤ 1, w∗

i1 + w∗
i2 = 1), and that the instances are L2 normalized

∑

i x2
i = 1, and

xi ≥ 0, and there is a positive separation: for someu ≥ 3 (we show 3 suffices), on any in-
stance obtained via sampling from the distribution,scx

− sc̄x
≥ uβ for someu, wherescx

is
the score obtained by true class andsc̄x

is the score obtained by the negative class. The proof is
based on showing a reduction in (squared) Euclidean distance betweenW (our current weight
vector or hypothesis) andW ∗ after each mistake (and subsequent update). There are at least two
major proof methods establishing convergence for the plainperceptron algorithm: showing the
dot-product between the current hypothesis and separator increases (seee.g., [8]), and showing
Euclidean distance decreases (as in [6]). We note that, due to the bounded condition on weights,
the dot-product property does not hold for the bounded-weight perceptron (simple counter ex-
amples exist).

Without loss of generality, we will focus on the first column (weights toc1) for bothW and
W ∗, wherein after an update some weights toc1 (the true class) must increase. For simplicity,
we writewi for wi1, andW = W1 (the first column). LetW ′ denote the weight vector after an

4 Equivalently, we could assume each feature keeps one weightparameter, which ranges in[−1, 1] (the
difference of the weight in the two-weight case).

5 This “saturation” condition is the cause of the difference in our convergence analysis from the typical
perceptron convergence argument.



11

update. Below,d = ||W −W ∗||22, andd′ = ||W ′ −W ∗||22 (distances before and after update).

d− d′ = ||W −W ∗||22 − ||W
′ −W ∗||22 =

∑

i∈x

(wi − w∗
i)

2 −
∑

i∈x

(w′
i − w∗

i)
2

=
∑

i∈x

(w2
i − w′2

i + 2w∗
i (w′

i − wi))

=
∑

i∈x

w2
i − (wi + min(βxi, 1− wi))

2 + 2w∗
i (wi + min(βxi, 1− wi)− wi)

=
∑

i∈x

w2
i −min(wi + βxi, 1)2 + 2w∗

i (min(βxi, 1− wi)),

where we have0 ≤ wi ≤ 1, 0 ≤ w∗
i ≤ 1,

∑

x2
i = 1, xi ≥ 0, and the separation constraint,

∑

i xiw
∗
i ≥ (

∑

i xi(1− w∗
i )) + uβ (and we show below, someu ≥ 3 suffices), and, because an

update took place, we have the update constraint
∑

i xiwi ≤
∑

i xi(1− wi).
In general some active features may only be partially “modifiable”, i.e., wi + βxi > 1, or

0 ≤ 1− wi < βxi. We denote this set bypart(x). The constraints, in the form that we will use,
are:

∑

i

xiwi ≤
∑

i

xi(1 − wi)⇒ 2
∑

i

xiwi ≤
∑

i

xi ⇒

2
∑

i6∈part(x)

xiwi + 2
∑

i∈part(x)

xiwi ≤
∑

i

xi ⇒

2
∑

i6∈part(x)

xiwi ≤
∑

i

xi − 2
∑

i∈part(x)

xiwi,

and forW ∗, the separation constraint can be written as:
∑

i

xiw
∗
i ≥ (

∑

i

xi(1− w∗
i )) + uβ ⇒ 2

∑

i

xiw
∗
i ≥ (

∑

i

xi) + uβ ⇒

2
∑

i6∈part(x)

xiw
∗
i ≥ (

∑

i

xi) + uβ − 2
∑

i∈part(x)

xiw
∗
i .

We have

d− d′ =
∑

i6∈part(x)

w2
i − (wi + βxi)

2 + 2w∗
i (βxi) +

∑

i∈part(x)

w2
i − 1 + 2w∗

i (1− wi)

= −β2
∑

i6∈part(x)

x2
i +

∑

i6∈part(x)

2βxiw
∗
i − 2βxiwi +

∑

i∈part(x)

w2
i − 1 + 2w∗

i (1− wi)

≥ −β2
∑

i6∈part(x)

x2
i + β(

∑

i

xi + uβ − 2
∑

i∈part(x)

xiw
∗
i −

∑

i

xi + 2
∑

i∈part(x)

wixi) +

∑

i∈part(x)

w2
i − 1 + 2w∗

i (1− wi)

= −β2
∑

i6∈part(x)

x2
i + uβ2 +

∑

i∈part(x)

(2βxi(wi − w∗
i ) + w2

i − 1 + 2w∗
i (1 − wi))



12

First, we simplify the last sum (into an expression involving βxi only). Each summand
(2βxi(wi − w∗

i ) + w2
i − 1 + 2w∗

i (1 − wi)) is decreasing inw∗
i , as the derivative is not pos-

itive: −2βxi + 2(1−wi) ≤ −2βxi + 2βxi = 0, using1−wi ≤ βxi (from the assumption that
i ∈ part(x)). Thus we can increasew∗

i to 1.0 and decrease the difference, so the lower-bound
for distance becomes:

d− d′ ≥ −β2
∑

i6∈part(x)

x2
i + uβ2 +

∑

i∈part(x)

(2βxi(wi − 1) + w2
i − 1 + 2(1− wi))

= −β2
∑

i6∈part(x)

x2
i + uβ2 +

∑

i∈part(x)

(2βxi(wi − 1) + (wi − 1)(wi + 1) + 2(1− wi))

= −β2
∑

i6∈part(x)

x2
i + uβ2 +

∑

i∈part(x)

(1 − wi)(−2βxi − (wi + 1) + 2)

= −β2
∑

i6∈part(x)

x2
i + uβ2 +

∑

i∈part(x)

(1 − wi)(−2βxi − wi + 1)

≥ −β2
∑

i6∈part(x)

x2
i + uβ2 +

∑

i∈part(x)

(1 − wi)(−2βxi) (dropped a non-negative term)

≥ −2β2
∑

i6∈part(x)

x2
i + uβ2 +

∑

i∈part(x)

(βxi)(−2βxi) = −2β2
∑

i

x2
i + uβ2 = (u− 2)β2.

In the last step, we again used the fact that fori ∈ part(x), 1−wi ≤ βxi (and that−2βxi ≤ 0).
Thus, as long asu > 2, we are guaranteed a positive difference. Withu = 3, we are guaranteed a
reduction ofβ2 at minimum. Since the maximum distance can be‖F‖2 (the number of features),
we obtain a mistake bound ofO(‖F‖2/β2). With maxx ‖x‖

2 = R, instead of 1, we obtain
O(R‖F‖2/β2), which has a similarity to the mistake bound for perceptron:O(R‖W ∗‖2/β2).
Given we begin with all 0.5s weight vector,0.5(for our case, akin to the zero vector), the number
of mistakes will beO(R‖W ∗ − 0.5‖2/β2).

Now, it is interesting that for several simple generalizations of feature updating to multiple
classes, while keeping the features’ weights in[0, 1] (and summing to 1.0), examples exist show-
ing that the Euclidean distance reduction does not hold. Forinstance, for the update in which
a feature deducts some weight from the negative class that obtained the highest score (if not
connected, then it doesn’t deduct), the following two matrices are a counter example:

W ∗ =

(

0 0.1 0.02 · · · 0.02
0.9 0.1 0 · · · 0

)

W =

(

0.5 0.5 0 · · · 0
0 0 0.1 · · · 0

)

Here with both (Boolean) features active, underW ∗ c1 (the true class) obtains0.9, while c2

obtains0.2, and other classes obtain0.02. So the score ofc1 is well separated from others. The
number of classes is sufficiently large so that each row sums to 1.0. UnderW , sc2

= sc1
= 0.5,

and all other classes obtain a score of0.1 or 0. So c2 is the only class with score equal or
exceedingc1. We see here that only row 1 ofW is modified, and we can verify that even for
smallβ, after updateW ′ will have a larger Euclidean distance.

Thus, two related questions arise immediately: (1) Is therea generalization of the binary-class
OOZ variant to the multiclass case (keeping the connection weights bounded) that satisfies the
Euclidean distance reduction property during an update (and thus converges)? (2) Does OOZ or
a close variant converge in the multiclass case?


