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Abstract

Consider learning tasks where the precision requirement is very high, for example a 99%
precision requirement for a video classification application. We report that when very differ-
ent sources of evidence such as text, audio, and video features are available, combining the
outputs of base classifiers trained on each feature type separately, aka late fusion, can substan-
tially increase the recall of the combination at high precisions, compared to the performance of
a single classifier trained on all the feature types, i.e., early fusion, or compared to the individ-
ual base classifiers. We show how the probability of a joint false-positive mistake can be less
— in some cases significantly less — than the product of individual probabilities of conditional
false-positive mistakes (a Noisy-OR combination). Our analysis highlights a simple key crite-
rion for this boosted precision phenomenon and justifies referring to such feature families as
(nearly) independent. We assess the relevant factors for achieving high precision empirically,
and explore combination techniques informed by the analysis.

1 Introduction

In many classification scenarios, e.g., in surveillance or in medical domains, one needs to achieve
high performance at the extreme ends of the precision-recall curve.! For some tasks such as medi-
cal diagnosis and surveillance (for detecting rare but dangerous objects, actions, and events), very

'In binary classification, given a set of (test) instances, let T’ denote the set of truly positive instances, and let T be
2T, while recall is T2 A precision-
recall curve is obtained by changing the threshold at which the classifier classifies positive, from very conservative or
low recall (small size |T'|) to high recall.

the set that a classifier classifies as positive. The precision of the classifier is




high recall is required. In other applications, for instance for the safe application of a treatment or
high quality user experience, high precision is the goal. In this paper, we focus on achieving high
precision. In particular, the goal in our video classification application is maximizing recall at a
very high precision threshold, specifically 99%. This has applications to improved user experience
and advertising, but can also benefit self-training (bootstrapping) systems during the automatic la-
beling of the unlabelled data, when a relatively low false-positive rate is sought. Achieving high
precision raises a number of challenges: features may be too weak or the labels may be too noisy to
allow the classifiers to robustly reach the required precision levels. Furthermore, verifying whether
the classifier has achieved high precision can require expensive manual labeling.

Many applications, particularly in multimedia, provide diverse feature families and different
ways of processing the different signals. For example, YouTube videos contain audio, video, and
speech streams, as well as text-based (e.g., title, tags) attributes, and each such facet (or “view”)
can be processed in distinct ways to create predictive features, such as color, texture, gradient and
motion-related histogram features extracted from the visual signal. Given access to such rich set of
feature families, a basic question is how to use them effectively. Consider two extremes: training
one classifier on all the features, aka early fusion or fusion in the feature space, versus training
separate classifiers on each family and then combining their output, aka late fusion® or fusion in
classifier/semantic space [27]. Training a single classifier on all the families has the advantage
of simplicity. Furthermore, the learner can potentially capture interactions among the different
features. However, there are complications: one feature family can be relatively dense and low
dimensional, while another very high dimensional and sparse. Creating a single feature vector out
of all may amount to mixing apples and oranges. This can require considerable experimentation
for scaling individual feature values and whole feature families (and/or designing special kernels),
and yet, learning algorithms that can effectively integrate all the features’ predictiveness may not
exist. Furthermore, for a significant portion of the instances, whole feature families can be missing,
such as absent audio or speech signals in a video. Training separate classifiers then combining the
outputs may lose the potential of learning from feature interactions across different modalities,
but it offers advantages: one can choose appropriate learning algorithms for each feature family
separately, and then combine them for best results.

In this work, we find that training distinct base classifiers offers an important benefit with
respect to high precision classification, in particular for maximizing recall at a high precision
threshold. Feature families based on very different signals, for example, text, audio, and video
features, can yield independent sources of evidence and complement one another. The pattern of
false-positive errors that the base classifiers make, each trained on a single feature family, may
therefore be nearly independent. Using an independence assumption on false-positive mistakes
of the base classifiers and an additional positive correlation assumption, we derive a simple up-
per bound, essentially the product of individual conditional false-positive probabilities, via Bayes’

2Early fusion subsumes late fusion, if one imagines the learning search space large enough to include both learning
of separate classifiers and then combining. But early vs. late is a useful practical distinction.



formula, onjoint false-positive mistakes (in case of two classibers, thateskboth classibers
making a mistake, given both classify positive). This boiséquivalent to the Noisy-OR model
[13]. Our subsequent analysis relaxes the assumptionseardls a single alternative condition
that needs to hold for the substantial drop in the probghlitjoint mistakes. Furthermore, such
criteria can be tested on heldout data, and thus the inaease>dence in classibcation can be
examined and potentially veribed (requiring substantiakts labeled data than brute-force valida-
tion). In our experiments on classibcation of videos, we thatirecall can substantially increase
at high precision levels via late fusion of nearly-indepemicbase classipers. We summarize our
contributions as follows:

1. We report the phenomenon of boosted precision at the hiegirof the precision-recall
curve when combining independent feature families via fiaggon2 We present analyses
that explain the observations and suggest ways for fusesgidbers as well as methods for
examining dependencies among classiber outputs.

2. We conduct a number of experiments that demonstrate ¢giregdrecision phenomena, and
compare several fusion techniques. Informed by our arglyse illustrate some of the
tradeoffs that exist among the different techniques.

The paper is organized as follows. Section 2 contains ouysisaand Section 3 presents ex-
periments. Section 4 discusses related work, and Section@udes. This paper extends our prior
work [20], in particular with additional experiments on s of classibers trained on subfamilies
of audio and visual features, and experiments on a multip@per-classibcation dataset [23].

2 Analyzing Fusion Based on False-Positive Independence

We focus on the binary classibcation setting and on the tagsier case for the most part. Each
instance is a vector of feature values denoted bgind has a true class denotedy, € {0, 1}.
We are interested in high precision classibcation, ancetber analyze the probability of false-
positive events. To show that the probability of joint fafsesitive mistakes can be signibcantly
reduced when different feature families are available dditton to an independence assumption
on (conditional) false-positive events, we need anothsitipe-correlation criterion (see below).
Our brst analysis uses these two assumptions, and derivgspan bound on the probability of
joint false-positive mistake. This bound is equivalentte Noisy-OR model [13]. We then discuss
these assumptions, and subsequently present a relaXadioyields a single intuitive criterion for
signibcant reduction in false positive probability.

The two assumptions are:

3In other words, the so-callefluck Test rings true! OIf it looks like a duck, swims like a duck, andaksalike a
duck, then it is probably a duck.O See.wikipedia.org/wiki/Duck test



1. Independence of false-positive mistakes:
P(fo(z)=1ly, =0, fi(z) =1) = P(f2(2) = 1|y, = 0)

2. Positive (or non-negative) correlatioR{ fo(z) = 1| fi(z) = 1) > P(fo(z) = 1),

Where f;(x) = 1 denotes the event that classiBarlassibes the instance as positive (ObresO),
and the eventf;(z) = 1|y, = 0) denotes the conditional event that classibeutputs positive
given the true class is 0 (OmisbresO), and=( 0, f;(z) = 1) is the conjunction of two events
(the true class is negative, whilg(z) = 1). We note that the assumption of the independence
of conditional false-positive mistakes is a subset (milidem) of the full Oview-independenceO
assumptions made in the original co-training work [4] (selated work, Section 4).

An upper bound on the probability of joint false-positivestake can now be derived:

P(yz =0[fo(2) =1, fi(z) =1) = P(y}g(:J‘"S(’CL"f)QS2 =fi(7$];1ixi): :

Ply.=0,fo(x) =1, fi(x) =1) _ P(fa(2) =1y, =0, fi(z) = 1) P(y. =0, fi(z) = 1)

(1)

S T P(h(e) = 1) PUi(2) = 1) P(fa(a) = 1) Ph@ =0 @
P =105 =0) Py =0. /() =1) _ P(A()=1.0,20) . o

= T P = 1) PUh@ =1 Pl =0 P(h@=1) W =0h@=1E
= (1 -PR)1-P)P(y.=0)"", (4)

whereP(y, = 0) denotes the probability of the negative class (the negptieg), and/F, is short
for P(y, = 1|fi(x) = 1) (the OconbdenceO of classiFtbat instancer is positive, or posterior
probability of membership, or equivalently, precision tEssiber). Positive correlation was used
in going from (1) to (2), and independence of false-posiivents was used in (2) to (3). Extension
to k > 2 classibers is straightforward generalization of the twassiPer case, making use of
the two assumptions: 1) Independence of false positiveakest Vk > 2, P(fi(z) = 1|y, =
0, Ni<efi(z) = 1) = P(fx(z) = 1lly. = 0), and 2) positive correlationVk > 2, P(fi(z) =
1 Aicr filx) = 1) = P(fe(x) = 1):
!
P(ys =0l A1 file) =1) < Py =0"% " (1-F),

The bound has the form of a Noisy-OR model, where the pridogdity is the OleakO probability.

Often, the positive class is tiny and(y, = 0)~' ~ 1. Thus, the probability of failure can
decrease geometricallg,g, from 10% false-positive error for each of two classibPersl% for
the combination. This (potential) near-geometric redurcin false-positive probability is at the
core of the possibility of substantial increase in precisigia late fusion in particular. In our
setting, we seek such boosts in precision specially fotivelg high probability ranges. Our focus
in this work is on further understanding and utilizing thifiepomenon.



2.1 Discussion of the Assumptions

There is an interesting contrast between the two assumptions above: one stresses independence
given the knowledge of the class, the other stresses dependencegiven lack of such knowledge.
The positive correlation assumption is the milder of the two and we expect it to hold more often
in practice. However, it does not hold in cases when the two classifiers’ outputs are mutually
exclusive (e.g., when the classifiers output 1 on distinct clusters of positive instances). In our
experiments, we report on the extent of the correlation. Very importantly, note that we obtain
an extra benefit from positive correlation, if it holds: given that substantial correlation exists, the
number of instances on which both classifiers output positive would be significantly higher than
independence would predict.

Let us motivate assumption 1 on independence of false-positive mistakes when each classifier
is trained on a feature family that is distant from the other. In the case of video classification,
imagine one classifier is trained on visual features, while another is trained on textual features
derived from the video’s descriptive metadata (e.g., title, description, etc). A plausible expectation
is that the ambiguities or similarities among instances in one feature domain that tend to lead to
classifier errors do not co-occur with the ambiguities in the other domain. For example, “Prince
of Persia” refers both to a movie and a video game, and the presence of these terms can lead to
confusion by a text-based classifier between videos about the movie versus the game. However
it is easy to tell such videos apart by the visual appearance or the audio. There can of course be
exceptions. Consider the task of learning to distinguish two games in a video game series (such
as “Uncharted 2” and “Uncharted 3”), and more generally, but less problematic, video games in
the same genre. Then the textual features may contain similar words, and the visuals could also be
somewhat similar.

2.2 A Relaxation of the Assumptions

As we discussed above, base classifiers trained on different feature families may be only roughly
independent in their false-positive behavior. Here, we present a relaxation of the assumptions that
shows that the geometric reduction in false-positive probability has wider scope. The analysis also
yields an intuitive understanding of when the upper bound holds.

When we replaced P(f2(x) =1, fi(x) =1) by P(f2(x) =1) P(f1(z) = 1), we could instead
introduce a factor, which we will refer to as positive correlation ratio rp, (the desired or “good”
ratio):

. _ P =1A)=1)
P P(fo(z) = 1)P(fi(z) = 1)’

Thus, the first step in simplifying the false-positive probability can be written as:

Plyx =0, fa(z) =1, fi(z) = 1)
rpP(fa(z) = 1)P(f1(z) = 1)

Plyx = 0lf2(2) = 1, f(z) = 1) =
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The numerator can be rewritten in the same way, by introdueifactor which we will refer to as
the false-positive correlation ratigy, (the ObadO ratio):

P(fa(z) =1, fi(z ):1,yx—0)
P(f2(z) =1y« = 0) ( ) 1yx—0)’

Tfp ==

Therefore:

T’pr(fQ(ﬂf) = 1JyX = O)P(fl(x) = 17yX = 0)
rpP(fa(x) = 1) P(f1(2) = 1)

P(yx = 0[fo(2) = 1, fi(z) = 1) , Or

P =01/ =1 fila) = 1) = PP - P, (5)

Thus as long as thead-to-good ratio r = fp is around 1 or less, we can anticipate a great

drop in the probability that both classibers are making dakes in particular(1 — »)(1 — Py) is
an upper bound when< 1. The ratios, andr, can be rewritten in conditional forhas:

P(fa(x) =1fi(x) =1)  P(fa(x) =Ly« = 0[fi(z) = 1,yx = 0)

|
P(hn)=1 ™7 P(fa(x) = L, = 0) (©)

Both ratios involve a conditioned event in the numerator, twedunconditioned version in the
denominator. Either measure can be greater or less thant WHai matters is their ratio. For
example, as long as the growth in the conditional overalitpesoutputs () is no less than the
conditional false-positive increasg, , the product bounds the false-positive error of combimatio
We can estimate or learn the ratios on heldout data (seeo88@&i5 and 3.7). In our experiments
we observe that indeed, ofters, > 1. This implies that false-positive events &f6@T necessarily
independent (in particular whe(y, = 0) =~ 1, see inequality 4), even for very different feature
families. However, we also observe thgt> 7¢,. The analysis makes it plausible that instances
that are assigned good (relatively high) probabilitieddw: base classibers are very likely positive,
which explains why fusing by simply summing the base classgeores may yield high precision
at top rankings as well. Simple aggregation techniques @mgetitive in a variety of tasks [28,
11, 9, 17]. We also experiment with the fusion-via-sumnratechnique.

2.2.1 Conditions for (a Mild) Boost in Confidence (Lift in Precision-Recall Curve)

A natural question is whether it is always the case that pi@ti(conbdence) tends to increase,
or P(yx = 1|fi(z) = fo(z) = 1) > max(Py, P»), even if not substantially, given the mild easily

4The ratios can be seen as essentially the pointwise muftieahiation quantities (without the log function) [22].
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understandable assumptions that the classifiers are positively correlated, and that both somewhat
agree’ on z being positive (i.e., P; > P(y, = 1)). This can help us understand when late fusion
can help lift the precision-recall curve, albeit modestly, even when the feature families or classifiers
are similar (such as two different classifiers trained on the same feature family). In particular,
assume P, > P, and we want to understand when it is the case that: P(y, = 0|fa(z) =1, fi(z) =
1) <1 — P (or, using equation 5, %’(1 — P)(1 - P) <1— Py). Simplifying, we get whenever
1-PFP < :7’; As expected, because P, > 0, this is a weaker condition than the condition for the
product upper bound to hold (which requires 1 < -2). However, a remaining question is whether

;
we can replace the extra dependence on false—positﬁle correlation ry, with the very mild positive
correlation assumption, 7, > 1 (together with the assumption that the two classifiers agree). In
the extreme case that the classifiers are duplicates, it can be verified that the condition holds, i.e.,
1- P, = % (as expected, the overall confidence stays the same). But in intermediate cases, we
find that counter examples exist, i.e., the overall confidence can in fact degrade (lower than the
minimum of P, and P). Imagine P(y, = 1) = 0.01 (generally, very low positive-prior), and
P(fa(x) = 1| fi(x) = 1) = 0.5 thus there is positive correlation, and P; = 0.5 (conditional false-
positive rate of 50%), but that P(y, = 0|f1(z) = fo(x) = 1) = 1 (their “intersection”, when both
output positive, are exactly the two classifiers’ false positives). Therefore, it appears that we still
need to take into account the false-positive correlation ratio r, (and in particular the ratio: r,, /7).

3 Experiments

We focus on video classification, where the problem is classifying whether a video depicts mostly
gameplay footage of a particular video game.® We also include brief experiments, in Section 3.9,
on the Cora dataset, which is a text (research paper) classification dataset enjoying multiple views
[23].

Our objective here is to maximize recall at a very high precision, such as 99%. For evaluation
and comparison, we look both at ranking performance, useful in typical user-facing information-
retrieval applications, as well as the problem of picking a threshold, using validation data, that
with high probability ensures the desired precision. The latter type of evaluation is motivated by
decision theoretic scenarios where the system, once deployed, should make binary (committed)
decisions or provide good probabilities on each instance (irrespective of other instances). We
begin by describing the experimental setting, then provide comparisons under the two evaluations.
Most of our experiments focus on visual and audio feature families. We report on the extent of
dependencies among the two, and present some results that include other feature families (text), as
well as sub-families of audio and visual features, and explore several variants of stacking.

3In the experiments, we will observe that when P; is very low (e.g., P; < P(y, = 1)), while Py > P(y, = 1)
i.e., when the two classifiers disagree on X, the overall joint confidence can be lower than the max Py (and r, <Tr ¢,).

%These “gameplay” videos are user uploaded to YouTube, and can be tutorials on how to play a certain stage, or
may demonstrate achievements, and so on.



For the video experiments in this paper, we chose 30 game titles at random, from amongst
the more popular games. We treat each game classification as a binary 1-vs-rest problem. For
each game, we collected around 3000 videos that had the game title in their video title. Manually
examining a random subset of such videos showed that about 90% of the videos are truly positive
(the rest are irrelevant or do not contain gameplay). For each game, videos from other game titles
constitute the negative videos, but to further diversify the negative set, we also added an extra
30,000 videos from other game titles to serve as negatives for all 30 labels. The data, of about
120,000 instances, was split into 80% training, 10% validation, and 10% test.

3.1 Video Features and Classifiers

The video content features used span several different feature families, both audio (Audio Spec-
trogram, Volume features, Mel Frequency, ..) and visual features (Global visual features such as
8x8 hue-saturation, and PCA of patches at spatio-temporal interest points, etc.) [31, 34, 19, 29].
For each type, features are extracted at every frame of the video, discretized using k-means vector
quantization, and summarized using a histogram, one bin for each codeword. Histograms for the
various feature types are individually normalized to sum to 1, then concatenated to form a feature
vector. The end result is roughly 13000 audio features and 3000 visual features. Each feature
vector is fairly dense (only about 50% are zero-valued). We also include experiments with two
text-based feature families, which we describe in Section 3.6.

We used the passive-aggressive online algorithm as the learner [8]. This algorithm is in the
perceptron linear classifier family. We used efficient online learning because the (video-content)
feature vectors contain tens of thousands of dense features, and even for our relatively small prob-
lem subset, requiring all instances to fit in memory (as batch algorithms do) is prohibitive. For
parameter selection (aggressiveness parameter and number of passes for passive-aggressive), we
chose the parameters yielding best average Max F1,” on validation data for the classifier trained
on all features (audio and visual) appended together. This is our early fusion approach. We call
this classifier Append. The parameters were 7 passes, and aggressiveness of 0.1, though the dif-
ferences, e.g., between aggressiveness of 1 and 0.01 were negligible at Max F1 0.774 and 0.778
respectively. We also chose the best scaling parameter among {1, 2,4, 8} between the two feature
families, using validation for best recall at 99% precision, and found scaling of 2 (on visual) to
be best. We refer to this variant as Append™. For classifiers trained on other features, we use the
same learning algorithm and parameters as we did for Append. We note that one could use other
parameters and different learning algorithms to improve the base classifiers.

We have experimented with 2 basic types of late fusion: 1) fusion using the bound 4 of Section 2
(NoisyOR), where false-positive probability is simply the product of the false-positive probabilities
of base classifiers, i.e., the Noisy-OR combination, and 2) fusion using the average of base classifier
probability scores (AVG). For NoisyOR, we set the negative prior P(y, = 0) = 0.97, since the

7F1 is the harmonic mean of precision and recall. The maximum is taken over the curve for each problem.



positives, for each label, are roughly 3% of datén Section 3.8, we also report on learning a
weighting on the output of each classiber (stacking), andi@seribe another stacking variant,
NoisyOR Adaptive, as well a simpler hybrid technique, NQ&#+AVG in Section 3.7.

3.2 Events Definitions and Score Calibration

We require probabilities for the conditional events of tbet ¢y, = 1|f;(x) = 1), i.e., posterior
probability of class membership. Many popular classitecasigorithms, such as support vector
machines, donOt output probabilities. Good estimatebépility can be obtained by mapping
classiber scores to probabilities using held-out (valbadtdata €.g, [24, 35, 20]). Here, we
generalize the events that we condition on to be the eventtibaclassiber score falls within an
interval (a bin). We compute an estimate of the probabiligt the true class is positive, given the
score of the classiber falls in such intervals.

One technique for extracting probabilities from raw clegsiscores is via sigmoid btting [25].
We instead used the simple non-parametric technique oirgr{pooling) the scores and reporting
the proportion of positives in a bin (interval) as probapikstimates, because sigmoid ptting did
not converge for some classes, and importantly, we wantéx toonservative when estimating
high probabilities. In various experiments, we did not alasea signibcant differencee(g, in
quadratic loss) when using the two techniques. Our binreegrtique is a variant of the (pool-
adjacent violators) PAV algorithm for isotonic regressia6, 36]. Briel3y, instances are processed
by classiper score from highest to lowest, and bins are enleahen at least 20 instances are
inside a bin, and there is at least one positive and one wegattance inside a bin (except for the
lowest bin which may have only negatives). The minimum-siaaedition controls for statistical
signibcance, and the latter condition ensures that theapilily estimates for the high scoring
ranges are somewhat conservative. Repeatedly, pairs akadjains that violate the monotonicity
condition are then merged. Note that in typical isotonia@egion, initially each bin contains a
single point, which can lead to the last (highest) bin with fositive proportion or a very high
probability estimate. Figure 1 shows the mapping for onsstkzer, for plain isotonic regression
and our parameter setting in this paper (minimum bin sizéos20, and the diversity constraint).
The main signibcant difference tends to be at the top of theghility range.

3.3 Ranking Evaluations

Table 1 reports recalls at different (high) precision tha#ds? and Max F1, for audio and visual

classibers as well as early (Append, Appenend late fusion techniques, NoisyOR and AVG.
Figure 2 shows the precision-recall curves for a few clagsilon one problem. We observe that
late fusion substantially improves performance (Olitt@tirve up) at the high precision regions

8The prior does not change the ranking experiments (Tableut gffects threshold selection (Table 2).
%n these results, we rank the test instances by classiber and compute precision/recall.
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Figure 1: The score to probability mapping learned for one classifier using two parameter settings,
one typical isotonic regression (minimum bin size of 1), and another requiring a minimum bin size
of 20 and both negative and positive instances within a bin (the diversity constraint), as a simple
way to obtain more conservative probability estimates.

of the curve. Note that we optimized the parameters (experimenting with several parameters and
picking the best) for the early fusion (Append) techniques. It is possible that more advanced
techniques, such as multi-kernel learning, may significantly improve the performance of the early
fusion approach, but a core message of this work is that late fusion is a simple efficient approach
to utilizing nearly-independent features for boosting precision (see also the comparisons of [11]).
Importantly, note that Max F1 is about the same for many of the techniques. This underscores the
distinction that we want to make that the major performance benefit of late over early fusion, for
nearly-independent features, appears to be mainly early in the precision-recall curve.

We will be using rec@99 for recall at 99% precision. When we pair the rec@99 values for

Prec. ! 9% | 95% | 90% | Max F1
Audio 0.046 | 0.093 | 0.13 0.51
Visual 0.13 | 0.50 | 0.63 0.81
Append 0.14 | 041 | 0.59 0.78

Append™ 026 | 039 | 057 | 0.82
NoisyOR 033 | 055 | 066 | 0.82
AVG (SUM) | 045 | 062 | 0.70 | 0.82

Table 1: Ranking performance, i.e., recall at several precision thresholds (averaged over 30
classes), on the test set (rec@99, rec@95, etc).
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each problem, at the 99% precision threshold, AVG beats all other methods above it in the ta-
ble, and NoisyOR beats Append and the base classifiers (at 99% confidence level). As we lower
the precision threshold or when we compare Max F1 scores, the improvements from late fusion
decrease.

0.98

0.96

0.94

precision

0.92

audio
visual
Append
0.88 |- late fuse (NoisyOR)

[P+

0.86 |-

recall

Figure 2: Precision vs. recall curves, on one of the 30 game classes, for the classifiers trained on vi-
sual only, audio only, the union of the two features (Append), and late fusion. Fusion substantially
increases recall at high precisions.

The improvement in recall at high precision from late fusion should grow when the baseline
classifiers have comparable performance, and all do fairly well, but not necessarily extremely well,
so there would be room for improvement. Figure 3 illustrates this (negative) correlation with the
absolute difference in F1 score between the base classifiers: the smaller the difference, in general
the stronger the boost from late fusion.!”

3.4 Threshold Picked using Validation Data

We now focus on the setting where a threshold should be picked using the validation data, i.e., the
classifier has to decide on the class of each instance in isolation during testing. Table 2 presents
the findings. In contrast to Table 1, in which the best threshold was picked on test instances, here,
we assess how the probabilities learned on validation data “generalize”.

In our binning, to map raw score to probabilities, we require that a bin have at least 100 points,
and 99% of such points to be positive, for its probability estimate > 0.99 (Section 3.2). Therefore

10 An interesting trend appears to be that Append* (early fusion) gains an advantage when the performances of one
feature family dominates the other (high X values).
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Absolute difference between F1 of Visual vs Audio-only classifiers

Figure 3: Each point corresponds to one problem. The x-coordinate for all points is the absolute
difference in max F1 performance of audio and visual-only base classifiers. For the first two plots,
the y-coordinate is the gain, i.e., the difference in recall at 99% (rec@99) when instances are
ranked. The first plot shows the gains of NoisyOR (in rec@99) over the visual classifier, the 2nd is
the gain of AVG over the Append™ classifier, and the 3rd is the gain of NoisyOR Adaptive (Section
3.7) over average. In general, the closer the performance of the two base classifiers, the higher the
gain when using late fusion. For many of the problems, the difference in rec@99 is substantial.

in many cases, the validation data may not yield a threshold for a high precision, when there is
insufficient evidence that the classifier can classify at 99% precision. For a given binary problem,
let . denote the set of test instances that obtained a probability no less than the desired threshold
7. - is empty when there is no such threshold or when no test instances meet it. The first number
in the triples shown is the number of “passing” problems (out of 30), i.e., those for which |E.| > 0
(the set is not empty). For such passing problems, let E? denote the number of (true) positive
instances in £.. The second number in the triple is number of “valid” problems, i.e., those for
which ;ggi > 7 (the ratio of positives is greater than desired threshold 7).

Note that, due to variance, the estimated true positive proportion may fall under the threshold
7 for a few problems. There are two types of variance. For each bin (score range), we extract
a probability estimate, but the true probability has a distribution around this estimate.!! Another
variation comes from our test data: while the true probability may be equal or greater than a bin’s

"'"This variance could be estimated and used for example for a more conservative probability estimation, though we
don’t pursue that here.
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estimate, the estimate from test instances may indicate otherwise due to sampling variance.'? The
last number in the triple is the average recall at threshold 7, averaged over valid problems only.

Threshold 7 ! " 099 " 095
Audio 0,0,0) (8,4,0.32)
Visual (8,3,0.653) | (24,20,0.56)

Append (early fuse) (3,1,0.826) | (26,16,0.50)
Append™ (early fuse) (7,3,0.60) (23,20,0.63)

NoisyOR (24,18,0.35) | (29,22,0.56)
AVG (0,0,0) (13,13,0.19)
calibrated AVG (17,12,0.65) | (30,26,0.62)

Table 2: For each classifier and threshold combination (threshold picked using validation data), we
report three numbers: The number of “passing” problems (out of 30), where some test instances
obtained a probability no less than the threshold 7, the number of “valid” problems, i.e., those
passing problems for which the ratio of (ture) positive test instances with score exceeding 7 to all
such instances is at least 7, and the average recall at threshold 7 (averaged over the valid problems
only). Note that if we average the recall over all problems, at 7 = 0.99 Append* gets 0.06 (i.e.,
0.6# 33—_0, since Append™ achieves 3 valid problems), while NoisyOR and AVG get respectively
0.21 and 0.26. Both the number of valid problems and recall are indicative of performance.

Fusion using NoisyOR substantially increases the number of classes on which we reach or
surpass high thresholds, compared to early fusion and base classifiers, and is superior to AVG
based on this measure. As expected, plain AVG does not do well specially for threshold 7 =
0.99, because its scores are not calibrated. However, once we learn a mapping of (calibrate) its
scores (performed on the validation set), calibrated AVG improves significantly on both thresholds.
NoisyOR being based on an upperbound on false-positive errors, is conservative: on many of
the problems where some test instances scored above the 0.99 threshold, the proportion of true
positives actually was 1.0. On problems that both calibrated AVG and NoisyOR variants reach
0.99, calibrated AVG yields a substantially higher recall. NoisyOR is a simple technique and the
rule of thumb in using it would be that if calibration of AVG does not reach the desired (99%)
threshold, then use NoisyOR (see also NoisyOR+AVG in Section 3.7). We note that in practice,
with many 100s to 1000s of classes, validation data may not provide sufficient evidence that AVG
reaches 99% (in general, a high precision), and NoisyOR can be superior.
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Figure 4: The positive correlation (good) raties,(y axis), versus dependency ratiog, on 19
games, for threshold = 0.2 (see Section 3.5), measured on tgst) = 1 if P; ! 7). Note that
for all the problems, the bad-to-good ratig,/r, < 1.

3.5 Score Spread and Dependencies

For a choice of threshold, let the eventf;(x) = 1 mean that the score of classikexxceeds that
threshold (the classiber outputs positive or ObresO).s&@ssing extent of positive correlation,
we looked at the ratios, (eq. 6, Section 2.2), wherg is the visual classiPer anf} is the
audio classiper. For " { 0.1,0.2,0.5,0.8}, r, values (median or average) were relatively high
(! 14). Figure 4 shows the spread for= 0.2. We also looked at false-positive dependence and
in particularr,. For relatively highr ! 0.5, we could not reliably test whether independence was
violated: while we observed 0 false positives in intersettthe prior probability of false positive
is also tiny. However, for ! 0.2, we could see that for many problems (but not all), the NULL
hypothesis that the false positives are independent calilabty be rejected. This underscores
the importance of our derivations of Section 2.2: Even ttotige feature families may be very
different, some dependence of false positives may stifiteXe also pooled the data over all the
problems and came to the same conclusion, that the NULL hgsd could be rejected. However,
rrp IS iN general relatively small, ang ! r, for all the problems and thresholdd 0.1 that we
looked at. Note that the choice of threshold that determinegvent (when the rule bres), makes
a difference in the bad-to-good ratios (see Section 3.7).

Note that if the true rec@99 of the classiberjsand we decide to requing many positive
instances ranked highest to verify 99% precision geg 100 is not overly conservative), then
in a standard way of performance veripcation, we requir@tope and labe)/x many positive

2Note also that many test instances may obtain higher prhiietbihan, and thus the expected proportion of
positives can be higher than
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PRrREC. — 99% | 95% | 90% | MAX F1

LDA 0.58 | 0.79 | 0.85 0.94
APPEND 0.65 | 0.86 | 091 0.93
LDA+APPEND 0.73 | 0.85| 0.92 0.95

LDA+AUDIO+VISUAL 0.76 | 0.88 | 0.94 0.95

Table 3: Average recall, over 30 classes, for several precision thresholds on the test set, comparing
classifiers trained solely on LDA (1000 topics using text features), Append (LDA, audio, visual),
fusion of LDA with Append on audio-visual features (LDA+Append), and fusion of all three fea-
ture types (LDA+audio+visual). While LDA feature alone perform very well, fusion, in particular
of audio, video, and LDA features, does best.

instances for the validation data. In our game classification experiments, we saw that base classi-
fiers’ rec@99 were rather low (around 10 to 15% on test data from Table 1). This would require
much labeled data to reliably find a threshold at or close to 99%. Yet with fusion, we achieved that
precision level on more than a majority of the problems (Table 2).

3.6 Text-Based Features and Further Exploration of Dependencies

Our training data comes from title matches, thus we expect classifiers based on text features to
do rather well. Here, as features, we used a 1000-topic Latent Dirichlet Allocation (LDA) model
[3], where the LDA model was trained on title, tags, and descriptions of a large corpus of gam-
ing videos. Table 3 reports on the performance of this model, and its fusion with video content
classifiers (using NoisyOR). We observe LDA alone does very well (noting that our training data
is biased). Still, the performance of the fusion shows improvements, in particular, when we fuse
visual, audio, and LDA classifiers. Another text feature family, with high dimensionality of 11
million, is features extracted from description and tags of the videos, yielding “tags” classifiers.
Because we are not extracting from the title field, the tags classifiers are also not perfect,'? yielding
an average Max F1 performance of 90%.

Table 4 shows the ¢, and r, values when we pair tag classifiers with LDA, etc. We observe very
high rf, values, indicating high false-positive dependence between the text-based classifiers. This
is not surprising, as the instances LDA was trained on contained words from tags and description.'*
We also compared pairs of feature subfamilies from either visual or audio features respectively.
The bad to good ratios remained less than one (for 7 = 0.1). The table includes the ratios for video
HOG (histogram of gradients) and motion histogram subfamilies.

3Note that combining these classifiers is still potentially useful to increase the coverage. Only a fraction of game
videos’s titles contain the game titles.

14We later compared tag-only and description-only classifiers and observed r 7,/r , < 1, even though both are based
on bag-of-words text features.
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PAIR ! LDAVSTAG | LDAvsVIS | TAGVSVIS | VISVSAUDIO | HOGVSMOTIONHIST
Tfp 101 3] 3 2 2.7
30 18 17 14 4.5

Table 4: Average values of;, andr, for several paired classibers gat= 0.1). Tag and LDA
(LDAvsTag) classibers are highly dependent in their pattérfalse positives, ané}% "1 We
observe a high degree of independence in the other pairings.

3.7 Improved NoisyOR: Independence as a Function of Scores

T T T T m!
One classifier score in [0, 0.05] —+—
One classifier score in [0.3,0.4]

10 + 4

Ratio of bad to good ratios
o
~——

L L L L L L L i L
[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability Output of 2nd Classifer

Figure 5: The bad-to-good ratioas a function of individual classibPer output-probabilianges.
When the classiPers OdisagreeO (one output is near tive paisitj 0.03, while the other is higher),
r" 1. Butr# 1,orr$ 1, when both Oagre@®, when both outputs are higher than the positive
prior (lower curve).

Further examination of the bad-to-good ratie r;,/r,, both on individual per class problems,
as well as pooled (averaged over) all the problems, sugthjéste the ratio varies as a function of
the probability estimates and in particular:r) 1 (far from independence), when the classibers
Odisagree®e., when one classiber assigns a probability close to 0 or thegifithe positive class,
while the other assigns a probability signipcantly higlaed 2)r %[0, 1], i.e., the false-positive
probability of the joint can be signibcantly lower than treometric mean, when both classibers
assign a probability signibcantly higher than the priorgufé 5 shows two slices of the two-
dimensional surface learned by averaging the ratios oeegtial of two classiPer probability out-
puts, over the 30 games. These ratios are used by NoisyORiel&pestimate the false-positive
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probability.”> Note that, it makes sense that independence wouldn’t apply when one classifier

outputs a score close to the positive class prior: Our assumption that the classifier false-positive
events are independent is not applicable when one classifier doesn’t “think” the instance is positive
to begin with. Inspired by this observation, a simple modification is to take an exception to the
plain NoisyOR technique when one classifier’s probability is close to the prior. In NoisyOR+AVG,
when one classifier outputs below 0.05 (close to the prior), we simply use the average score. As
seen in Tables 5 and 6, its performance matches or is superior to the best of NoisyOR and AVG.
We also experimented with learning the two-dimensional curves per game. The performance of
such, with some smoothing of the curves, was comparable to NoisyOR+AVG. The performance of
NoisyOR Adaptive indicates that learning has potential to significantly improve over the simpler
techniques.!¢

Table 5: Ranking performance experiments (Table 1) using NoisyOR+AVG and NoisyOR Adap-
tive. The rows for (plain) NoisyOR and AVG are copied from Table 1 for ease of comparison.

PREC. — 99% | 95% | 90% | MAX F1
AVG (SUM) 045|062 | 0.70 0.82
NoOISsYOR+AVG 0451062 |0.72 0.83
NOISYOR ADAPTIVE | 0.47 | 0.65 | 0.72 0.83

THRESHOLD 7 — >0.99 >0.95

NoOI1sYOR (24,18,0.35) | (29,22,0.56)
CALIBRATED AVG (17,12,0.65) | (30,26,0.62)
NoIsYOR+AVG (24,22,0.322) | (28,26,0.45)
NOI1SYOR ADAPTIVE | (29,22,0.43) | (30,25,0.59)

Table 6: Threshold experiments (Table 2) repeated for NoisyOR+AVG and NoisyOR Adaptive.
The rows for (plain) NoisyOR and calibrated AVG are copied from Table 2 for ease of comparison.

3.8 Learning a Weighting (Stacking)

We can take a stacking approach [33] and learn on top of classifier outputs and other features de-
rived from them. We evaluated a variety of learning algorithms (linear SVMs, perceptrons, decision

5Given p; and ps, the map is used to obtain 7,,,, and the product 7,5, (1 — p1)(1 — p2) is the false-positive
probability. To learn the map, the domain [0, 1] x [0, 1], is split into grids of width 0.05, and ratio r is estimated for
each grid cell for each problem, then averaged over all problems.

16Note that NoisyOR Adaptive has a potential advantage in that the map is estimated using multiple games.
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trees, and random forests), comparing Max F1 and rec@99. On each instance, we used as features
the probability output of the video and audio classifiers, p; and py, as well as 5 other features:
the product pyps, max(pr, p2), min(py, p2), 257, and gap |p; ! po|. We used the validation data
for training and the test data for test (each 12k). For the SVM, we tested with the regularization
parameters C' = 0.1, 1, 10, and 100, and looked at the best performance on the test set. We found
that, using the best of the learners (e.g., SVM with C=10) when compared to simple averaging,
recall at high precision, rec@99, did not change, but max F'1 improved by roughly 1% on aver-
age (averaged over the problems). Pairing the F1 performances on each problem shows that this
small improvement is significant, using the binomial sign test, at 90% confidence.!” SVMs with
C=10 and random forests tied in their performance. Because the input probabilities are calibrated
(extracted on heldout data), and since the number of features is small (all are a function of p; and
p2), there is not much to gain from plain stacking. However, as we observe in the next section,
with additional base classifiers, stacking can show a convincing advantage for further boosting
precision.

3.8.1 Late Fusing Classifiers Trained on Subfamilies

There are several feature subfamilies within Audio and Visual features. A basic question is whether
training individual classifiers on each family separately (14 classifiers), then calibrating and fusing
the output, can further boost precision. As we split the features, individual classifiers get weaker,
but their fusion may more than make up for the lost ground. In particular, we observed in Section
3.6 that the bad-to-good ratios for each subfamily pair were lower than 1 for the pairs we checked,
indicating the potential for precision boost. For training the 14 classifiers, we used the same
algorithm with exact parameters as above (7 passes of passive-aggressive). Calibration of the
classifiers was performed on all of validation data, as before. We used 2-fold validation on the
validation data for parameter selection for several stacking algorithms we tested, as in the previous
section (random forests, linear SVMs, committees of perceptrons). The features are the outputs of
the 14 classifiers (probabilities) on each instance. For SUM (simply sum the feature values, akin
to AVG), SVMs, and perceptrons (but not random forests), we found that including the products
of pairs and triples of outputs as extra features was very useful. For efficiency, we kept a product
feature for an instance as long as the value passed a minimum threshold of 0.001. Both on the
2-fold validation data, and on test data, random forest of 200 trees performed best in achieving a
rec@99 of 0.53 on test. Max F1 did not noticeably improve (compared to using two classifiers).
Table 7 presents the performance results. The superior performance of random forests on rec@99,
compared to SVMs, perceptron committees, and fusing two classifiers (e.g., AVG) is statistically
significant using a paired sign test (e.g., 21 wins vs. 9 losses when comparing to SVMs).

7Bven using only p; and p, as features gives a slight improvement in Max F1 over simple averaging, but using all
the features gives noticeable additional improvement.
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PREC. — 99% | 95% | 90% | MAX Fl1
RANDOM FORESTS (200 TREES) | 0.53 | 0.65 | 0.73 0.84
PERCEPTRON COMMITTEE (40) 0.50 | 0.64 | 0.72 0.83
LINEAR SVMs,C =10 049 | 0.63 | 0.72 0.83
SUM 047 | 0.59 | 0.67 80

Table 7: Average ranking test performance (over 30 classes), when late fusing individual classifiers
trained on sub-feature families of Audio and Visual features (14 many subfamilies), where late fu-
sion is achieved by learning on the validation data (no learning for SUM). We observe a significant
boost in rec@99, in particular via random forests.

3.9 Analysis on the Cora dataset

The Cora Research Paper Classification dataset consists of about 31k research papers, where each
paper is described by a number of views, including author names, title, abstract, and papers cited
[23]. Each paper is classified into one of 11 high level subject categories (Artificial Intelligence,
Information Retrieval, Operating Systems,...). We used two views, author and citations, and par-
titioned the data into a 70-15-15 train-validation-test split. Each paper has on average 2.5 authors
and 21 citations. We trained and calibrated the scores of linear SVM classifiers (trained on each
view separately and on both appended), using the best parameter C' = 100 for early fusion, after
trying C' € {1,10, 100} on validation (all had close performance). Same C' was used for single-
view classifiers.

We expect the authors and citations views to be roughly independent, but exceptions include
papers that cross two (or more) fields (e.g., both Artificial Intelligence and Information Retrieval):
the citations may include papers crossing both fields and the authors may also have published
papers in both. Table 8 presents the good (r,,) and bad ratios and ranking performances for a few
algorithms. The median bad-to-good ratio slightly exceeds 1 (it is 1.2). Thus we observed weaker
patterns of independence compared to the video data, but the near 1 ratios suggest that late fusion
techniques such as AVG and NoisyOR+AVG should still perform relatively well at high precision
requirements, as seen in Table 8. Note that the positive proportion of the various classes is high
compared to the video dataset, therefore, considering inequality 4, the factor P(y, = 0)~! can be
high (1.5 for Al and ~ 1.1 for several other classes).

4 Related Work

The literature on benefits of multiple views, multi-classifier systems (ensembles), and fusion, ap-
plied to a variety of tasks, is vast [12, 15,4, 16, 18,27, 5, 11, 37]. The work of Kittler et. al. ex-
plores a number of classifier combination techniques [17]. There are several differences between
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Table 8: The Cora Research Paper Classification dataset. Left: The good (r,) and bad ratios (for
T = 2), using the two linear SVM classifiers trained on Citations or Authors only for the 11 top
level classes. The percentage of positive instances is shown in parentheses for each class. Right:
Ranking performance (recall at two precision thresholds and Max F1), using SVM classifiers,
averaged over the 11 problems.

Tp | Tip Tp rip || Prec. — 9% | 95% | Max F1
Al (35%) 1.7 | 3.3 | HW Arch (4%) | 10 11 Author Only 0.02 | 0.03 0.54
IR (2%) 17 | 9.2 | Theory (10%) | 5.5 8 Citations Only | 0.03 | 0.13 0.71
DB (4%) 11 | 15 Prog. (13%) 45 | 6.7 || Append 004 | 0.19 0.73
Encr. (4%) | 12 | 10 HCI (5%) 11.1 | 11.7 || AVG 0.09 | 0.19 0.73
OS (8%) 59| 7 Data (8%) 8.1 8.7 || NoisyOR 0.08 | 0.18 0.72
Netw. (5%) | 6.1 | 6.9 NoisyOR+AVG | 0.09 | 0.21 0.73

that work (and much related work) and ours: the treatment is for a more general setting where
classifier outputs can be very correlated.'® Often other performance measures, such as average
precision over the entire precision-recall curve, equal error rate, or max F1, are reported. We are
not aware of work that focuses on high precision, in particular on the problem of maximizing re-
call at a high precision threshold, with a careful analysis of near independence of the false-positive
events, explaining the phenomenon of increased precision early in the precision-recall curve via
late fusion.

Near-independence relates to classifier diversity, and these and close properties such as
(dis)agreement rate, have been studied in work on classifier ensembles as well as co-training and
semisupervised learning settings [12, 4, 1, 30, 21, 32]. The original view-independence assump-
tions in co-training [4] are strong, in that they assume conditional independence assumptions for
all the possible combinations of class values and output values of the classifiers (similar to the
Naive Bayes assumption). Abney describes an example scenario (two classifiers on a data set)
where the classifier outputs remain correlated after conditioning on the class [1]. Later work has
sought to relax the assumptions, and make them more realistic and directly relevant (i.e., find
sufficient and/or necessary conditions) to the success of co-training [1, 32]. For instance, Abney
gives a condition for weak dependence (which remains a function of all possible class values),
and shows that co-training can succeed if only weak dependence holds. Similarly, early work on
ensembles pointed to their potential in reducing error (e.g., via majority vote), by making ideal in-
dependence assumptions. Our initial analysis is similar in nature, but with our focus on conditional
false-positive events, requires a milder independence assumption (plus an unconditional positive
correlation) than full view independence.

8We also note that in much of past work on ensembles, the classifier outputs, even if they are interprettable as
probabilities, are not carefully calibrated probabilities learnt from heldout data.
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Multikernel learning is an attractive approach to early fusion, but in our setting, efficiency
(scalability to millions of very high dimensional instances) is a crucial consideration. We observed
that a simple scaling variation is inferior. Prior work has found combination rules very competitive
compared to multikernel learning with simplicity and efficiency advantages [11, 28].

Fusion based on Noisy-OR variants has a similarity to the Product of Experts (PoE) in that it
involves a product [14]. POE combines probabilistic expert models by multiplying their outputs
together and renormalizing. The product operation in PoE is a conjunction, requiring that all
constraints be simultaneously satisfied. In contrast, since NoisyOR fusion considers the product of
failure probabilities, it is akin to a disjunction [13]; the predicted confidence is always as strong as
the least confident expert, and when multiple experts agree the confidence increases sharply. The
product rule for two classifiers is simply p; P2, while the Noisy-OR is p; + p2 — p1 P2 (ignoring the
priors). Kittler et. al. [17] study the product rule and compare it to variants such as sum, and find
sum to be more robust, due to the higher sensitivity of the product rule to variance in the output of
the classifiers. We briefly experimented with ranking evaluation using the product rule (i.e., the set
up of Table 1). Recall at 99% precision was high, but a percent lower than AVG (SUM), and the
average Max F1 was lower at 0.79 (several techniques obtain 0.82). Note that for the product rule
to work well, in general the low probabilities need to be estimated fairly well too. For example, at
an extreme, if very low scores, from one classifier, are rounded to O by the calibration technique,
the probability output of the other classifier loses its influence completely (e.g., on ranking such
instances). Tamraker et. al. and Gehler et. al. find competitive results with late fusion using simple
sum and product techniques [28, 11].

A number of techniques are somewhat orthogonal to the problems addressed here. Cost-
sensitive learning allows one to emphasize certain errors [10], for example on certain types of
instances or classes. In principle, it can lead the learner to focus on improving part of the precision-
recall curve. In our case, we seek to minimize false-positive errors, but at high ranks. If formu-
lated naively, this would lead to weighting or supersampling the negative instances. However,
negative instances are already a large majority in many applications, as is the case in our exper-
iments, and thus weighting them more is unlikely to improve performance significantly. It has
been observed that changing the balance of negative and positive classifier can have little effect
on the learned classifier (in that work, decision trees and naive Bayes) [10]. Other work mostly
focuses on oversampling the positives or downsampling the negatives (e.g., [2]). Area under curve
(AUC) optimization is a related technique for improved ranking, though the techniques may be
more appropriate for improving measures such as max F1, and we are not aware of algorithms that
substantially improve at very high precision over standard learning technique (e.g., see [7, 6]).

5 Summary

Fusing classifiers trained on different sources of evidence, via a Noisy-OR model and its exten-
sions, can substantially increase recall at high precisions. When one seeks robust class probabil-
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ities, or a threshold that achieves high precision, one can significantly save on manually labeling
held-out data compared to the standard way of verifying high precision. For classifiers trained
on very different features, we showed how the probability of a (conditional) joint false-positive
can be upper bounded by the product of individual (conditional) false-positive probabilities, there-
fore, in such scenarios, an instance receiving high probabilities from multiple classifiers is highly
likely a true positive. This property also partly explains our observation that simply summing the
base classifier probabilities, and other simple variants such as product, can do very well when the
objective is improving precision at top rankings. As the number of classifiers grows, addressing
the interdependencies of classifier outputs via a learning (stacking) approach becomes beneficial.
We showed promising results in that direction. Investigating the multiclass case and developing a
further understanding of the tradeoffs between early and late fusion are fruitful future directions.
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