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Abstract. We describe the state of our work on Prediction Games
for unsupervised cumulative learning of structured perceptual concepts.
Here, concepts predict one another and are built from each other. Im-
proving at prediction drives the learning, and co-occurrences drive con-
cept construction. In each episode, through the process of interpretation,
the system determines which of its many concepts are useful, i.e. form a
coherent account of (low-level) buffer contents. By practicing many in-
terpretations, prediction weights are continually updated, and from time
to time new concepts are generated, leading to improved predictions and
more coherent accounting. Over the past few years, our approach has
become more probabilistic and information-theoretic. We report on our
improved results in recovering good split (e.g. word) boundaries, when
starting at character or lower levels. We describe our current understand-
ing of the challenges, including internal and external non-stationarity,
and incorporating new concepts, as well as potential applications.
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“... any visual input is consistent with an unlimited number of interpretations.

The challenging question is how the perceptual system functions such that we normally

are unaware of any ambiguity. Our experience is simply that of seeing things the way

they are... our conceptual systems comes prepared with expectations.. These sorts of

expectations or “constraints” occur in all facets of cognition.”

Medin, Ross, & Markman (preface to ’Cognitive Psychology’) [26]

1 Introduction

The tremendous progress in artificial intelligence of the past two decades not
withstanding [13, 34, 2], our best case for intelligence remains arguably what
different minds, in the biological world, achieve. A mind has limited computa-
tional resources, in time and space, and we view it as all those information and
decision-making processes that are collectively in charge of the difficult task of
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Fig. 1: Subject to interpretation: an image can be interpreted in a variety of ways,
and some interpretations could be much more salient to the observer (interpreter)
than others. Left: rabbit or duck. Right: old vs. young woman (among other
possibilities). In interpretation, one’s perceptual processes determine which of
one’s concepts (hierarchical patterns) are present and in which configurations
(their spatiotemporal relations). Interpretation answers what (pixels, lines, ..)
goes with what, and generating ’perceptual stories’.

conducting the business of life (maintaining, adapting, growth, prolonging, man-
aging). Thus, a mind is finite and continually interfaces with a world (including
the body) that is, in our view, infinite.1 The external world is infinitely rich,
changing, and productive, but devoid of meaning, and minds create or extract
their own meanings over time by interacting [27, 29, 9, 8, 6].2 This interaction, ob-
served over some spatio-temporal period, can be interpreted as flexible behavior
and called intelligent (by another mindful subject).

The intelligence of humans appears to rest on entities, or representations,
called concepts [28, 18, 12] (see Sect. 2.2), and in particular many concepts, such
as ’mother’, ’water’, ’table’, ’democracy’, ’life’, ’mind’, ’mad’, · · ·, that work well
enough together, for instance to achieve daily common sensical behavior. Two
distinct and major problems (among many) that arise are:

1 Boundedness does not imply finiteness. That the ’physical’ universe is finite or in-
finite is probably not a well-formed provable (or even falsifiable) statement, and an
answer to the question of what is to be counted would need to be agreed upon (related
to a mind’s interpretation). However, in one perspective, the trajectory, e.g. from
physics, to chemistry, to organic chemistry, to life and society, points to the world’s
productivity and open-endedness. We also posit that it is best to think that our
minds, due to development, have the potential to interpret a scene, or a snapshot
of sensory impressions, in an infinite variety of ways. This paper touches on that
interpretation aspect.

2 The notions of worlds and minds are intertwined. Consider, for instance, this quote,
from Lewontin, 1991: “[T]here is no “environment” in some independent and ab-
stract sense. Just as there is no organism without an environment, there is no en-
vironment without an organism. Organisms do not experience environments. They
create them.” (from [3]). See also “lifeworld” of Husserl and ’Umwelt’ of von Uexküll,
and enactive and embodied cognitive science [17, 40, 41].
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Interpretation: which (few) of my many concepts form a coherent account of the input?

Fig. 2: Interpretation in Prediction Games (PGs): In each (interpretation)
episode, sensory pipelines convert the raw impressions into a primitive sequence,
then interpretation takes place, answering the question: out of my many (mil-
lions of) concepts in V, which few, e.g. 10s to 100s, are useful in this episode
(and in what configuration)? In this picture, bigrams (corresponding to) ’ap’
and ’pp’ are activated.

1. (a snapshot-in-time question) Given sensory input, for instance when looking
at a picture or a scene at time t, how does one, quickly and adequately, figure
out (mostly unconsciously) which of one’s concepts (patterns), from a large
set V, are useful (i.e. adequately meet one’s needs at time t)? (Fig. 1)

2. (historical/developmental question) Where do these many concepts (in the
thousands, millions, ...), richly interdependent, come from, in the first place?

On the question of where so many concepts come from, supervised machine
learning offers a candidate answer: that they can be taught (i.e. labeling, manu-
ally or by some process). However, it appears that this is not feasible, in achieving
human-level capabilities, considering the amount of the learning that is required,
and the complexity of the interaction between an individual and her/his world.
The concepts are to be operational or useful in some sense (they are not merely
for classification or labeling). When looking at infant development, it also ap-
pears that much learning takes place without explicit teaching or communica-
tion: that appropriate machinery, and some appropriate conceptual space(s) (or
’theories’ of one(s) world [31, 10]), has developed already in the mind, after the
early few months of life, that makes learning from other humans possible, such as
learning a mother tongue and further developing appropriate behavior. We seek
unsupervised continual learning of many concepts by a system that is embedded
in its environment.

The way we have tackled these two questions, and the constellation of prob-
lems around them, in our dynamical systems approach, which we have called
Prediction Games (PGs) [20, 19], is to address the two questions simulta-
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(a) Expedition learns
via practicing interpretations.

(b) After learning in many in-
terpretation episodes, Expedition
interprets with higher-level (more
predictive) concepts (n-grams).

Fig. 3: (a) The basic loop of Expedition repeats: input episode→ interpret→learn
(from the interpretation) (“practice interpretation”). Learning currently consists
of updating prediction edges and, from time to time, adding new concepts (com-
positions). (b) After many interpreting+learning episodes, Expedition interprets
(predicts, etc) with higher-level concepts (with increased information-utility):
the same input can evoke different, highest level, concepts in the future.

neously. We imagine the PGs system to be composed of several learning and
inference processes working together. Our current system, called Expedition,
repeatedly practices using its existing concepts, as it interprets its raw input
(Fig. 1 and 2), in order to develop its conceptual space further (i.e. update
and enrich its network of connections N , and from time to time add new con-
cepts, expanding its concept vocabulary V) (Fig. 3). We note that the structured
PGs approach, currently focused on developing perceptual concepts (percepts),
could allow ultimately for communicating among such systems (language de-
velopment) and teachable systems. Compared to existing neural network ap-
proaches, the concepts are explicitly represented and modular (discrete), which
could have advantages of transparency (interpretability), and sample efficiency
when learning or adapting (when assigning blame or credit) (see Sect. 3). The
PGs approach is a model-based framework, but myriad models are learned and
adapted, in part concurrently, and in part sequentially and cumulatively. It can
be viewed as constructivist [8, 5], but focused on perception. There remain many
challenges, as we explain, but our findings point to the promise of this framework.

This summary paper is intended to provide a short overview of the current
ideas and system, with updated motivations and philosophy, and some findings
and comparisons. The next section explains the (Expedition) system [21, 22],
and goes over basic notions, including what we mean by “concept” or “inter-
pretation”. We then summarize our findings to date. In Sect. 3 we compare
and contrast the PGs approach, conceptually, to large language models based
on neural networks, and in Sect. 4 we describe possible applications of PGs.
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2 Overview of the System and Basic Notions

Expedition works on text and the concepts it develops correspond to n-grams
of characters currently (Fig. 2 and 3).3 At any point, the system maintains
a vocabulary of concepts V and a hierarchical network of (typed, prediction)
edges N among them. Both sets are dynamic: V grows, and edges are added
and dropped from N during the learning. Initially, V is limited to the set of
primitive concepts,4 corresponding to an alphabet (a discrete finite set), A,
and initially N can be empty (or V(0) ≈ A and N (0) = {} at time t = 0). In
text, A can be the set of ASCII characters, up to 100 unique characters in our
experiments. However, we have also experimented with lower level primitives,
which we explain later.5 Expedition learns by repeatedly inputting a text string,
such as a line, randomly picked from a text source (a text corpus, or a large
file), interpreting it, and learning from this process (an interpretation episode):
N and V grow over time. For example, in our experiments, over say 100s of
thousands of episodes, V grows from ≈100 to 10s of thousands of concepts.

2.1 Interpretation

There is a one to one correspondence between a character (from alphabet A) and
a primitive concept. We often say “character”, an element of A, and “primitive”
interchangeably, thus initially V = A (abusing notation). Similarly, we will use
’a’, to refer both to the unigram character as well as the primitive concept
corresponding to it.

The content of the input buffer, the character sequence, in each episode, is the
ground-truth, “reality”, for the system, and what the system uses to verify the
higher-level concepts it activates. The raw contents are also the starting point of
the analysis in an episode, the start of the interpretation process. Interpretation
is the process of mapping the characters, the lowest level observations, into
highest-level concepts in current V (n-grams). In general terms, it is the process

3 The support for approximate matching, Sect. 2.4, extends the representation some-
what, to a conjunction of stochastic disjunctions. We conjecture that there exist
learning algorithms to further increase the representation power.

4 These are the ’givens’ or the innate or hardwired concepts (given by evolution,
or the engineer designers). In Uexküll’s work in theoretical biology, the primitives
may stand for (the digitized versions of) the inner/primal features (innenwelt or
unmediated reality), while higher-level concepts would correspond to the more dis-
tal/transformed/mediated features of the umwelt, learned by an organism. Much
work, e.g. in computer vision (such as recognition by parts) [15, 33, 44], shares sim-
ilarities to PGs. Our approach is also reminiscent of Hume’s atomism (as well as
axiomatic mathematics), that perception could be reduced to ”atomic impressions”
(indivisible building blocks) via various constructions.

5 On the other hand, in the first implementations of PGs, initial V was the set of all
words [19]. It is not required that the entire A be specified from the outset, just
that its members be automatically recognized (by earlier sensory pipelines) and,
whenever a new member is observed (first time), a new primitive be allocated.
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of figuring out which (few) of ones (high-level) concepts are most useful for the
current situation. More specifically, in our approach, interpretation is a search
for the concepts that form a most coherent account of the input.

In every episode, the system tries to find a sequence of concepts in V that best
’hang-together’ (cohere) as well as ’explain’ or match (or predict) the contents of
the input buffer (see CORE, Fig. 4(a)). The final product of this process, which
we also refer to as an interpretation, is a data structure comprised of a sequence
of concepts, and for each concept c an specification of the consecutive characters
in the input buffer that concept c matches (accounts for).

There can be multiple selected interpretations to cover the entire buffer, and
there can be overlaps among concepts, in the regions that they account for (but
no double rewarding in computing the CORE score). These final selected inter-
pretation data structures are used for learning (weight updates). As higher level
concepts (compositions: bigrams, trigrams, ...) are built over time, interpretation
becomes a more involved process, consisting of both ’bottom-to-top’ and horizon-
tal edges, invoking compositions and other concepts, as well as ’top-to-bottom’,
or matching, sub-processes: for certain search-initiating concepts (primitives at
the lowest level), the system decides whether to join it to its left, or right, or
leave it as is, and repeats this, until no well-matching concepts remain. Both
invocation and matching are prediction processes. There is evidence that in the
human visual system both bottom-up and top-down (prediction) processes are
at work during perception [39, 38, 32].

Interpretation also plays a major role in the field of semiotics, the study of
sign systems and meaning making [7, 16, 14], and our work can be viewed as a
computational (and learning/developmental) account of semiosis.6

2.2 What is a Perceptual Concept?

A concept in our current system corresponds to an n-gram, a sequence of one
or more consecutive characters (Fig. 4(b)). It can be viewed as a pattern with
a control structure: once activated, it takes over and directs the matching (or
predicting) during the interpretation process. For instance, imagine that the
“now” concept exists in the system. It is composed of the primitives ’n’, ’o’

6 Semiotics (e.g. biosemiotics and cognitive semiotics) studies how signs and symbols
convey meaning (and is not just limited to intentional communication) [7]. Interpre-
tation, in particular in the work of Charles Peirce, is a central concept in semiosis,
and there are similarities to our use: the system or agent interprets (maps) a stretch
of raw sensory information, internally, into an interpretant, which could correspond
to our highest level selected concept. For us, the final product of an interpretation
process can be a sequence of concepts, and even several interpretations (e.g. to cover
the entire input buffer), and we use and develop prediction and probability seman-
tics for what could be meant as relations between the semiotic concepts of ’signs’,
’icons’, and ’indices’. Previously, we used the term ’segmentation’ [21, 20], but inter-
pretation is a better fit. Our work, with its ’inward’ emphasis on bottom-up concept
building for internal prediction and use, is also closer to idealism (vs. realism) in
epistemology (e.g. see [36, 37]).
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(a) CORE (COherence + REality).

(b) Anatomy of a concept: lateral
and vertical edges (to concepts).

Fig. 4: (a) CORE is used to guide the search and score candidate interpretations
during interpreting. Two ways of understanding CORE: 1) a measure of infor-
mation gain, 2) a way of combining fit to context and match strength (match to
the buffer contents). (b) A concept, in V, is a node in the network N (of typed
weighted directed edges). For example, ’now’, is part of ’know’ and other compo-
sitions, i.e. it has vertical edges. It also has horizontal edges (to nodes/concepts),
each weighted (moving conditional probabilities), for predicting its immediate
left and right in interpretations it occurs in.

and ’w’, in a certain order or configuration.7 If ’n’, ’o’, and ’w’ appear in the
input together, and the concept “now” fits the wider context well, i.e. nearby
concepts predict it well or vice versa, it will participate as part of the final
selected interpretation (e.g. consider “.. the time is now..” vs. ’now’ appearing
in “.. the knowledge ..”). Approximate matching is supported too (see Sect. 2.4).
Thus, while the canonical form is ’now’, the presence of this form in the input
is neither necessary nor sufficient for the concept “now” to be picked in a final
chosen interpretation of an episode.

A concept is also a node in network N : it has weighted prediction (’horizon-
tal’) out-edges and holonym or vertical edges (Fig. 4(b)). Concepts are both the
predictands (targets of prediction, by other concepts) and the predictors (fea-
tures) in the system. This symmetry is an attractive draw of PGs.8

Concepts vs. Interpretations. Interpretations, composed of concepts, are
ephemeral in general, lasting for an episode only. If episodic memory were sup-
ported, perhaps some interpretations could be recorded to serve as useful mem-

7 The matching order need not be left to right. For instance, in a bottom-to-top search
process, the middle ’o’ may first activate and start the match/prediction attempt.
This allows for flexibility when the entire concept does not appear in the input buffer,
due to timing (of what went into the buffer), noise and corruption, and so on.

8 This symmetry (and constraint) is not typical in machine learning, for instance,
in supervised learning (nearest neighbors, decision trees, neural networks, ...), the
features (or predictors) are often different from the classes (the predictands).
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ories. Interpretations can be viewed as (fleeting) micro-thoughts, or “perceptual
stories” (Fig. 1). Concepts can be viewed as pieces of interpretations that became
persistent at some point (Sect. 2.5), lasting across many episodes and perhaps
for the entire remainder of the life of the system. Concepts collect and update
(prediction) statistics and are utilized in a slow (statistical/associative) learning
process.

2.3 Edge Weight Semantics: Moving/Developing Probabilities

Concepts predict one another, and these prediction relations are supported by
weighted directed edges. The weights are conditional probabilities that change
over time. Expedition supports predicting what comes immediately to the left
and to the right of a concept, in a final selected interpretation.9

At the primitives level, when higher level concepts haven’t been learned yet
(when V = A), the edge probabilities have clear simple semantics: we have two
sets of prediction edges, the left and the right, and for instance for the right edge,
’a’ → ’b’, the weight is the conditional probability, P (′b′|′a′), that ’b’ follows ’a’
(immediately to the right of ’a’) in the input buffer.

Non-Stationary (and Non-IID). With the generation and use of new higher-
level concepts in interpretations (the growth of V), the conditional probabilities,
in addition to being dependent on the (external) input stream, become a func-
tion of the system’s decisions in the previous interpretation episodes, such as
which interpretations won and were selected (the system’s historical behavior).
The same holds true of new concepts generated.10 The input stream, to any con-
cept (serving as a predictor), is non-IID. In particular, the use of new concepts
causes non-stationarities, even if the external world is stationary. Certain weights
(probabilities) need to be lowered (or edges possibly dropped altogether), while
new edges are introduced or probabilities raised. This is a kind of internal, and in
particular developmental, non-stationarity: the external input stream (text cor-
pus, etc) need not be changing, but internally the system goes through changes.
We investigate learning and tracking changing probabilities via space bounded
predictors, which we call Sparse Moving Averages (SMAs) [23].11 For this type
of open-ended non-stationarity, challenges of plasticity vs. stability arise, and to

9 Learning longer predictions are possible, and in earlier implementations of PGs we
used a larger window, but, currently, CORE works adequately with simple ’one-hop’
prediction.

10 This is a second sense in which Expedition is a “system” in a dynamical-systems-
theory sense: the initial conditions and its interpretation history affects its future
behavior (interpretations) through self-feedback, i.e. edge-weight updates. This self-
feedback phenomenon becomes more pronounced when PGs learning is embedded
in a larger agent that decides what to sense (see Sect. 4). This dependence may
make theoretical analyses more challenging as well (perhaps to a lesser extent, other
learning techniques, in particular the online ones, share the same property).

11 Sparse, as V is large, but for an update of an edge only one concept is observed at
any time point. The number of edges (prediction relations) is kept sparse too, e.g. in
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best handle such, different learning-rates, one for each edge (prediction relation),
are kept. These SMA techniques are used for updating the active concepts’ pre-
diction edges (whenever a final interpretation is selected). This is a concurrent
online aspect of the learning: multiple edges, but a relatively small subset of the
entirety of N , are updated in each episode.

Thus, in PGs, the edges in N may encode not just weights (conditional
probabilities), but also learning rates and other information useful for, in effect,
change detection [23], as well as other match-related information (e.g. concept
offsets). The search process during interpretation uses the edge probabilities for
a more effective search, as well as for scoring and selecting final interpretations
(see CORE next). We are working on developing probabilistic semantics for the
vertical edges as well, to make the search more robust and principled.

2.4 CORE: Why Should I Compose? (Gain in Information)

Intuitively, ’now’ is more informative or meaningful (in the English language),
than any of its individual parts, such as ’n’ or ’o’. CORE quantifies this in terms
of a comparison to a simple baseline prediction system [22]. If a composition
such as ’now’ is predicted by the system (context, i.e. concepts nearby, or a
prior) with sufficiently high probability p, in particular if p is larger than the
product of the character-level probabilities, pi, of ’n’, ’o’ and ’w’ (the primitive
priors), then it is better to predict ’now’ (compared to predicting the individual
characters separately). CORE is log( p

p1p2p3
), and it is a gain in information12

over a baseline system that (1) does not go beyond individual characters, and
(2) makes the independence assumption (does not even learn the conditional
probabilities among the unigrams). Expedition, by expanding N and V, gets
more and more distant from the baseline in terms of CORE (when run on a
non-random stream) [21, 22].

CORE is flexible and supports approximate matching with a principled ap-
propriate penalization, e.g. substituting ’n’ in ’now’ with any string inA∗ (Kleene
closure) (such as the possibility of skipping ’n’). Fig. 4 shows that CORE can
also be viewed as a way of combining strength of fit to context with strength of
a match (each with its own costs and rewards, all based on logarithm of proba-
bilities). We use CORE to guide the search and score interpretations (a chain of
concepts). There are a number of ways that CORE could be used in the search,
and we continue to investigate how best to utilize it. For further details about
CORE, please see our prior work [22].

2.5 Challenges of Generating and Incorporating New Concepts

There are a few common themes, for generating and incorporating new concepts,
and our overall approach so far could be viewed as an implicit generate-and-test

the 100s. This implies good probabilities can be learned (tracked) down to a certain
minimum (e.g. 0.01 or 0.001) [23].

12 The term “information gain” has another somewhat different meaning in decision
tree induction [30], but its use is also very applicable here.
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scheme. In general, the system cannot predict whether or how much CORE
is improved by a candidate new concept: this depends on how different the
distribution around the composed concept is, compared to its part concepts (is
there synergy?). The system generates a number of concepts over time, and let
them gather statistics and in effect cooperate and compete, with existing and
other new concepts. If there are higher level regularities in the input stream,
CORE should eventually improve.

The (horizontal) prediction edges are good candidates to generate holonyms
(compositions) from. A possibly simpler alternative is generating, with some
probability, a composition from two concepts next to each other in an interpre-
tation. However, a concept needs to be used (observed), i.e. selected in sufficiently
many final chosen interpretations, before it is allowed to participate in composi-
tions (or allowed to produce ’children’ nodes or holonyms of its own). Otherwise,
the system could generate too many (insignificant or low utility) concepts. Typ-
ically we have required 100s of observations as a threshold. Another problem
surfaces: a new concept may not have any horizontal (out-going) edges when it
is created, and other concepts are not predicting it either (no incoming edges).
But such edges are required to have a good CORE score to be selected (to be
“observed”). This is a chicken-and-egg problem,13 and we are investigating in-
terpretation processes that can accommodate the robust incorporation of new
concepts. It is possible that some form of balancing between exploration and
exploitation is required.

Composing to generate higher n-grams can be viewed as a kind of coarse-
to-fine generation (from general such as a primitive ’a’, to more specific such
as ’apple’).14 We expect going in the other direction, i.e. supporting a kind
of grouping or clustering (disjunction or compression, or fine-to-coarse) in the
structure of concepts is also fundamental and crucial to achieving the full power
of PGs. This remains a major open problem.

2.6 Some Findings

In our earlier implementation, in order to deal with the non-stationarity caused
by generation of new concepts, in order to incorporate, the Expedition system
had to learn from scratch every so often [21]. With advances in non-stationary
probability prediction (SMAs) [23], and how we use CORE, the system is signifi-
cantly simpler and these transitions (incorporating new concepts) are smoother.

As the system learns, CORE improves over time [21, 22],15 and the concepts
discovered appear to correspond well to words and phrases. Furthermore, one

13 Recommender systems have a similar ’cold-item’ problem for incorporating, that is
appropriately recommending, new items.

14 Another, more common coarse-to-fine operation (such as in inducing hierarchical
clusterings or in a few techniques for learning finite-state automata) is to split an
existing node into two or more nodes (currently missing in Expedition ).

15 However, related information theoretic measures such as entropy or perplexity de-
grade as the vocabulary V expands.
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can examine the final interpretation in an episode and examine how the system
’sees’ that episode (it is an ’interpretable’ approach, see Sect. sec:apps).

Measuring Quality of the Endings. Expedition makes local decisions, and
its interpretation search needs to be fast, so it is possible that, for instance
with inferior algorithms, it could converge and get stuck in poor local optima.
It would be good to have quantitative external measures of progress (CORE
being an internal measure). We note also that the learning of new concepts
is not uniform, e.g. some trigrams are built before discovering all good bigrams
(and common phrases discovered before many single words). We have been using
measures based on goodness of the endings: how well the endings of concepts, in
an interpretation, respect the “natural” but hidden (to the system) boundaries.
As larger concepts are discovered and used, do we get better alignments? In
natural language, if we take blank space and other punctuation as good places
for the endings, and inside of words as bad ones, indeed the system, as it learns,
reduces the bad-endings ratio (e.g. the ratio of bad right-endings to all right-
ends in an interpretation) from say 0.7s, i.e. 3 out of 4 splits are bad (when it
begins with unigram characters), to 0.2s.

We have observed that more search time allowed within each interpretation
episode can help improve CORE in the episode, as expected, as well as bad-ratio
performance [21], but more research is required to understand the interaction
of various components, and, for instance, whether (and how) concept structures
should be modified (currently, only prediction edges are modified).

Encoding Experiments: Assessing Dependence on the Choice of Prim-
itives. As the vocabulary V grows, the new concepts appear less frequently, and
gathering statistics and the learning slows in a sense. We want to evaluate re-
peated compositions (and whether/how errors accumulate) quicker if possible,
and also assess dependence of performance on the quality (informativeness) of
the starting alphabet. Thus, we are also conducting experiments where Expedi-
tion begins with an alphabet A′ set to a lower level than ASCII characters,16 for
instance, at an extreme, binary A′ = {’0’, ’1’} (the system would have two prim-
itives only). We encode each original character in A, via a fixed or variable-width
encoding, using codes (strings) based on the elements of A′ (Fig. 5). How well
are the hidden character boundaries discovered, when Expedition starts with
such A′? An early such experiment was reported in Expedition [21], with some
positive results, which we have improved since. For instance, when using fixed-
width bigram encoding, i.e. |A′| = 10, yielding 10x10=100 codes (adequate for
up to 100 unique original characters in A), and initially every other ending would
be bad at the primitives level (Fig. 5, baseline of 50%). Our current techniques
lower the bad-ratio to below 0.04 rate, within a few 1000s of episodes.

By stressing the Expedition systems in these ways, we explore the various
tradeoffs involved and get insights into the limits of the learning algorithms, and
also find opportunities to improve them.

16 Thanks to Brian Burns for pointing out the possibility of intermediate alphabets.
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Fig. 5: In an encoding experiment, each original character gets a code from a
lower level alphabet A′, e.g. here A′ = {’0’,’1’, ...,’9’}. In the example above,
each character is encoded into a bigram (fixed-width 2) from A′ (e.g. ’t’→ ’02’,
’h’→ ’12’,..). With Expedition starting with A′ (’sees’ its input stream at the
level of A′ initially), the general question is how well it can recover higher-
level (hidden) regularities. After many episodes, interpretation is performed at
higher levels (bigrams, trigrams, ..., over A′), and one can evaluate the left or
right-endings of the activated concepts in each interpretation. In such fixed-
width bigram settings, half of the endings (every other one) are bad (50% bad-
ratio for a baseline performance, and the initial performance of Expedition),
and Expedition, with our current techniques, reduces its bad-ratios to nearly 0
(below 0.04) after a few thousand episodes. In the Expedition output above, the
first ending (in red) is bad, and the remainder (in green) are good.

2.7 A Summary of the Main Assumptions

We summarize a few main interrelated assumptions (or informed intuitions)
behind the PGs approach:

– (discreteness) A discrete approach to concepts, to their representation, is
feasible (could this hold true only for perceptual patterns?).

– (sparsity) Not many (out) edges needed per concept (e.g. 100s or 1000s).
– (approximate) No need for learning probabilities below a certain minimum.
– (fresh data) The rich unlimited input stream is an important enabler (for

feasibility).
– (local/online) Making local decisions (e.g. in an interpretation search) is

adequate for robust learning (vs. expensive global optimization).
– (algorithms) There exist incremental unsupervised techniques for learning

sufficiently powerful representations (and learning many such patterns).
– (a system, not a single algorithm) Multiple processes, of learning and in-

ference, working together, is probably required (and some may need to be
tightly integrated).

– (one objective for PGs) Prediction suffices as an overall driver of the learning.
– (open-endedness) Having no a priori size limit on N is a considerable draw.

On the main feasibility assumption, the persistent question is whether we can
avoid combinatorial explosion while preserving the learning of powerful represen-
tations. We have seen promising results combining SMAs for prediction edges,
interpretation search and inference techniques using CORE as the guide, and
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basic concept generation and incorporation ideas [22, 23]. Much work remains to
be done to provide evidence for truth status of the above. In particular, progress
on large deep feedforward neural networks, e.g. large language models based on
transformers, cast doubt on some, which we discuss next.

3 Conceptual Comparisons to Large Language Models

Large language models (LLMs), based on feed-forward neural nets (NNs) in
particular using the transformer architecture [1, 42], are also based on learning
and operating via predicting, and have attained substantial success, surpassing
all expectations [42, 13, 2]. We have motivated PGs along the same lines [19,
20], but as discussed above, there remain many research challenges. What could
PGs offer? We review some conceptual differences between LLMs and PGs, and
point to a few potential benefits, and disadvantages, of PGs next.

Supervised vs. Unsupervised. NNs are supervised learners, requiring
pairs <x, y> (a feature vector, or token sequence, x, and a label or class y),
while PGs are unsupervised (self-supervised) structure learners (no use for the
y’s): a PGs system makes its own y’s (concepts, or functions). The learning is
open-ended: no a prior bound on network size17 (unlike a typical NN, whose finite
structure needs to be specified). To function, in each episode, the PGs system
first structures the input stretch x, imposing its own current concepts and their
learned relations, onto x (it interprets). This allows it to make predictions, with
(structured) concepts as the predictands and predictors, of what may come next
for example. This unsupervised learning can be useful for environments/tasks
with little domain knowledge (see next section).

Cost of Inference.During operation, even if we stop the learning, PGs require
two-way inferences, involving search, activating, matching, and scoring (Sect.
2.1). While we work on advancing and simplifying the algorithms, interpretation
remains a costly elaborate process that, for instance, requires data structures
that keep account of the matchings attempts,18 and each concept (node in N )
can be viewed as a sophisticated ’book keeper’ for predicting changing proba-
bilities in an open-ended setting [23, 22].19 NNs, are significantly lighter, using
one-directional inferences (and a node in the network is much simpler). Thus
operating PGs could be costlier.20 What could the learning of structures and
predicting with them buy us?

Sample Efficiency (or Agent-Friendly Learning). NNs are powerful
function approximators, and currently PGs learn n-grams only. We conjecture

17 This is in theory, or the abstract model of the learning: the network size N in PGs is
a function of experience.

18 Techniques such as cachings of various kind (from recent episodes) could help sub-
stantially, but the cost of doing good search and inference cannot totally be erased.

19 Even the edges may need to encode not just weights, but other information, such as
learning rates, match offsets, and change detectors (see Sect. 2.3) [22, 23].

20 However, many NN layers may be required to achieve similar functionality. Empirical
comparisons are needed ultimately.
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that the representation power can be extended, but we expect some bias, a
limitation, in learning to remain. However, this bias may be a benefit in terms
of sample efficiency. In particular, even if we assume each (perceptual) learning
episode, say in a human, takes place in as low as the order of a second, humans
have only about 106 episodes of learning in a year. The issue of limited experience
is exacerbated when one considers action execution (actions can take more time
than perceptions, may change environment in an irreversible way, etc). NNs
are in general sample hungry, and may require more samples for the extensive
complexity of what humans learns. Furthermore, the world changes, and for
instance skill learning may need to be continually tuned and adapted (one sense
of dynamic coupling with the environment [25, 4, 41, 6]). The representation in
NNs are distributed and often very deep (to achieve their power). It is hard to
update one aspect without changing others, the extreme version of this being
issues of catastrophic forgetting in sequential learning [43]. For such reasons, NN
training typically requires IID samples (randomly permuted corpora, with many
training passes over such). PGs use more of a localist (digital) representation
[11]: while there is a distributed aspect, i.e. higher level concepts can share
part concepts, each concept acquired is explicitly represented (a node in N )
and explicitly participates in interpretations. Updating in PGs is more localized
(the edges of those in a final selected interpretation are updated), and higher
level concepts, being less frequent than the lower level, take more time to learn
and thus tend to be substantially shallower than typical deep NNs.21 Thus,
PGs may incur a higher computational cost for interpreting and learning in each
episode, but may incur a lower sample size cost (trading learning complexity for
computational complexity).

The SMA techniques, utilized in PGs, are designed for efficient learning under
internal and external non-stationarity [23, 22] (Sect. 2.3), and thus PGs may be
more robust toward sequential non-IID learning in general. The next section
expands on this.

4 Potential Applications

We hope research in PGs can shed further light on processes involved in percep-
tion and development (as a theoretical and computational framework). Other
applications of PGs can be broken into two categories: stand alone, e.g. as a
learning tool for analysis, and in a larger system, e.g. in an (autonomous) agent.

An Interpretable Learning Tool. As a stand alone, a PGs system pro-
vides an interpretable tool for analysis, e.g. of a foreign language or for a recorded
unknown activity (animal communications and activity, computer network be-
havior, and so on). We assume the primitives to be a set that conveys some

21 Considering these observations, the concept of “development” does not readily apply
to deep NN training. However, in the case of PGs, one can look at the transitions to
using new concepts (very identifiable) and the changes in the prediction probabilities,
as development (i.e. a series of changes, forming trajectories in the learning tasks).
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initial understanding by the analysts,22 and that sufficiently many episodes are
available (a long enough data stream). Some locality of dependencies (regular-
ities) needs to hold too, but we expect many natural and artificial systems to
follow such hierarchical but local patterns, or the near decomposability of com-
plex systems [35]. A concept acquired is interpretable, it has a canonical form, a
sequence of primitives currently. Its summary context is also reflected in the sys-
tem, i.e. the lateral prediction edges with their probabilistic weights: in general,
a node’s neighborhood in N . Thus, one can examine the network N learned. An
interpretation itself is interpretable: one can examine how the system ’sees’ its
input (in a given episode), by looking at high scoring interpretations.

Agent-Friendly Learning. In a larger agent (in which PGs could be a sub-
system), the higher-level concepts learned, e.g. discovered and extracted in the
visual modality, can then find a variety of applications, serving as more powerful
predictors, into more distant future/space, than the lower level primitives, in
the same modality or data stream, or for a different modality, e.g. better predic-
tors of food, and reward/cost in general (associations within and across sensory
channels). The kind of perceptual experience an agent receives as it acts is bi-
ased toward certain aspects of the environment, such as finding food, shelter,
and so on. We expect PGs can be more systematic and faster online learners
than traditional NNs and to be more effective at generalizing, in a world that,
in many senses, is highly structured but also changing in significant ways. Fi-
nally, PGs can provide the (random) discrete-valued variables (the activated
concepts in an episode), along with appropriate probabilities, that are neces-
sary for reasoning and planning, communication and language (and teaching),
episodic memory, and other symbol-based tasks under uncertainty. We seek to
explore these possibilities within autonomous agents [24].

5 Conclusions and Future Directions

Perception is not a simple input interface: it may be viewed as the point at
which a finite (but dynamic and growing) mind interfaces with an infinite world.
Through perception, at every time point, the mind determines which few of its
many concepts are the variables of interest/concern (repeatedly answering the
question: what should be my concern?). The world is infinite and does not di-
rectly provide this: the mind (agent) has to identify and extract such [29, 9, 27].
With development, the set of possibilities (concepts) can change and expand.
PG learners are designed for such changing and open-ended internal and exter-
nal interactions. A PGs system is not given a priori what high-level complex
patterns (concepts) will be useful in the world it will face, but is provided with a
set of building blocks and appropriate machinery and biases (learning and infer-
ence algorithms), and has to discover and incorporate such patterns in a timely
developmental, i.e. sequential and cumulative, manner. In particular, it practices
interpretation and through such learning it continually adapts and expands its

22 Concepts learned on an initially low level, such as the binary primitives of Sect. 2.6,
may take some time to understand.
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network of concepts. We seek to incorporate PGs within autonomous agents,
and explore how the PGs approach could support other types of learning, for
instance in foraging tasks and in cumulative skill learning [24].

How far can one extend the learnable expressive power of PGs? A major open
direction is extending what can be learned to well beyond n-grams, i.e. beyond
conjunctions: in particular supporting learning and incorporating in effect dis-
junctions together with conjunctions. We may need to extend the current scoring
function, CORE, in order to do so. Formally, if the episodes are generated by a
(probabilistic) finite state machine (FSM), and the input buffer is large enough
to contain every string output by the FSM, we conjecture that CORE is maxi-
mized if the FSM is learned. This can be established when the FSM is restricted
to a subclass (for instance, when limited to n-grams). Furthermore, it would
also be good to develop guarantees of convergence to the underlying FSM with
appropriate assumptions and (PGs) algorithms.

Finally, related to the above questions of learning power, given sufficient
agreement on the basic philosophy and motivations behind the PGs approach,
another broad question is the number of distinct hardwired (basic) processes that
one needs to approach human capabilities (engineering complexity).
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