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Abstract. We explore how different types of memory can aid spatial
navigation in changing uncertain environments. In our simple foraging
task, every day, the agent has to find its way from its home, through
barriers, to food. The world is non-stationary: from day to day, the loca-
tion of some barriers or food may change. The agent’s sensing is limited,
and its location information is uncertain. Any map construction, and
use such as planning, needs to be robust against such uncertainties. Any
learning should be adequately fast. We look at a range of strategies, from
simple to sophisticated, with various uses of memory. We find that the
agent that builds and keeps updating a map, even though the map is
partial and noisy, can be substantially more efficient than the simpler
agents, as task difficulties such as distance to goal are raised, as long as
the uncertainty, from localization and change, is not too large.
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“You can never know everything,” Lan said quietly, “and part of what you know
1s always wrong. Perhaps even the most important part. A portion of wisdom

lies in knowing that. A portion of courage lies in going on anyway.
Winter’s Heart, Book IX of the Wheel of Time, by Robert Jordan.

1 Introduction

The rich, productive, and ever changing world necessitates agents capable of
continuous and flexible adaptations to achieve their objectives. In the world
of engineered Al systems, reinforcement learning (RL) techniques [45, 20], spe-
cially the model-free variety using deep feed-forward neural networks, have had

5 Excerpt in “The Bayesian Choice”, by C. Robert [37].
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substantial success in the past decade, as they are flexible, in that they do not
assume much about the world, e.g. do not require modeling and encoding a com-
plex world by the engineers of the agent, and powerful, as the (policy or value)
function to be learned can be highly complex [41, 8, 31]. However, a critical limi-
tation of the current model-free RL is the requirement of vast amounts of data. In
dynamic real-world settings where the agent must adapt to evolving and chang-
ing tasks—ranging from minor adjustments to fundamental shifts—such systems
often fall short: a change in the function (task) to be learned or performed can
effectively reduce the available training sample size. Extensive and expensive
simulations and substantial pretraining are common workarounds, striving to
anticipate and train for all possibilities, as a way to enhance robustness, but the
demands of the real productive world often curbs the success of such approaches.
We seek efficient online learning and continual adaption that occurs in a life-
time, for a lifetime (i.e. keeping pace with life’s changes and challenges).

Model-based techniques can potentially address some of the drawbacks of
data inefficiency, their promise being that once acquired, the model(s) can be
used repeatedly to find solutions for a diversity of related tasks. A challenge
is what exactly an explicit model could mean, and whether such a model can
be efficiently learned and updated. Consider spatial navigation, e.g. for forag-
ing, which is a fundamental activity across the biological spectrum, with much
research exploring how different minds meet its challenges [54, 42,51, 3, 16, 22,
48,32,19]. Organisms need to be efficient (in energy/time) and flexible, and
perform different but related navigation task (get to food, water, shelter, ...) in
an at times dangerous and changing terrain (seasonal changes as well as abrupt
changes, such as floods and droughts). The reward, from reaching the goal, is
often distant, and the goal can change, thus the slow learning via reward prop-
agation is often insufficient. From bacteria to bats and birds, living organisms
utilize a range of sensing, memory, communication, and computational (e.g., in-
ference) capabilities to efficiently reach their destinations [9,48, 32].5 While much
of this machinery appears innate [22], a significant portion is likely dynamically
and repeatedly learned and tuned and reconfigured throughout an organism’s
lifespan. In particular, the hippocampus is a structure that is established to be
critically involved in memory formation and use, for instance to help the agent
navigate via the creation of the so-called cognitive maps (such as place cells and
grid cells) [33, 48], though the details, such as what is represented and how such
is used, continues to be debated and investigated [53,35,12,43].

A map data structure, once built, is versatile and highly useful for navigation:
at least theoretically, to get from any point A to any point B (on the map), one
can plan using the map and execute the plan, i.e. one can solve a range of
(related) navigation tasks rather efficiently when one has access to a good map.
The map can be modified and reused if reroutings are sought (e.g. in case of new

5 Organisms of the same species, and the same organism but at different times, can use
different (mix of) strategies [52, 18,21]. The same person could use several strategies
to get to a destination, e.g. from deciphering signs on a subway map to asking other
people for directions (and remembering and executing those rough directions).
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barriers blocking the routes that used to work). Consequently maps are the go
to data structures for navigation tasks, e.g. in robotics and in particular SLAM
domains [7]. But building a model (map) of a complex changing world, under
limited time and sensing, carries its own many challenges. We explore these
challenges in a simplified world and task: Consider a simple grid-world where
every day an agent, with very limited sensing of its world, needs to find its way
to food through barriers (road blocks). Moreover, the routes to food can change
from day to day, some times substantially: several barriers or food may change
location. A map could be part of a solution. If the world is fairly static, such a
map could save much time over the lifetime of the agent. There are a number of
challenges, including:

1. Any map learnt will be biased towards the experience of the agent, for in-
stance, how much exploration it has performed (biased non-IID samples).

2. The world changes, and information extracted from the map can be out-
dated (uncertainty 1).

3. Agent’s knowledge of its current location (we use simple path integration)
contains errors due to motion (action) noise (uncertainty 2)

4. How (and whether) an agent would carve and granularize its sensed and
perceived space into locations, to serve its needs, remains open.

We explore the first three challenges in this work. Issues of world complexity
and substantial uncertainty has thwarted the practical use of model-based tech-
niques for open-ended real-world tasks that contain a diversity of uncertainties.
Probabilistic planning is highly intractable in general [27,23], and earlier works
on agents have also found that the focus on explicit representations and planning
in traditional AI approaches may be misplaced, in part to due to the aforemen-
tioned challenges, and in part because simpler agent strategies can be sufficiently
successful in a diversity of worlds and tasks [1, 2, 6].

In this paper, we investigate a number of navigation strategies, from simple
to the more sophisticated, to see how they compare as we vary certain aspects of
task difficulty: the environment size (distance to food), the proportion of barriers
(path complexity), and two types of uncertainty: daily barrier/food location
change and the uncertainty of localization (in agent location). In particular,
each agent type uses a mix of (pure) strategies to get to food, and we compare
the more sophisticated agents to a fairly simple mixed greedy agent (Table 1),
that uses random action selection some of the time, together with the strategy
of (greedily) lowering its distance to goal, at other times. A fly, for example, may
execute a strategy akin to greedy via the use of the smell sense [28, 16].

In general, the simpler strategies require less (of memory and computing ma-
chinery)” and can remain useful in a wider range of environments: In environ-
ments where food is abundant and near, and obstacles are sparse, they would be

" Simpler strategies may rely on more sophisticated sensing: sensing itself can be com-
pute intensive and involve pipelines of processing as well, for instance for estimating
any of localization, orientation, and wind direction e.g. for smell [17,28,16].
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adequate. However, in harsher more challenging and richer environments,® and
when there exists (sufficiently stable) structure to the world, and enough time
to make a decision (think, reason, ...), the more sophisticated strategies may
outperform the simpler ones. We have two goals in this work:

— We ask: Are the more sophisticated map-based strategies worth their costs (of
memory, intricate control, and in general compute machinery)? Under what
conditions are they better than the simpler ones? By how much?

— (upon a positive answer wrt their worth) We provide insights on agent ar-
chitecture and the types of memory and learning that could support efficient
map construction and effective updates (map maintenance), and map use.

We find that well-designed memory-based strategies, that appropriately take
uncertainties into account, in building, updating, and using memories that ulti-
mately serve as maps (in this paper), outperform mixed-greedy and other simple
strategies, and the advantage grows with environment size and difficulty (dis-
tance to goal and barrier portion), as long as the rate of change and location-
uncertainty is not too large. Due to uncertainty and task complexity, pure strate-
gies, such as always planning for a goal, may underperform drastically, and we
find that robust behavior needs to use several pure strategies. Furthermore, a
planning agent needs to take failure at planning time (e.g. no path to food) or ex-
ecution failure (eg an unanticipated barrier) into account: Repeated replanning,
as well as map updating, are necessities. Thus, there is indeed complexity to
appropriate implementation of the more sophisticated strategies, but the gains
in flexibility and reach can be worth it.

How does an agent (come to) know what to remember and how best to utilize
its (episodic) memory? We assume certain capabilities, such as basic sensing, the
importance of space and the details of path-integration, are (mostly) hard-wired
[44,11,22]. In future work, we hope to reduce the number and the extent of the
"hard-wired assumptions’ and in particular add additional learning in a lifetime
(see Sect. 6).

This paper is organized as follows: We describe the simple (grid) environment
and the basics of the agent and task(s) next. We then describe our flexible
agent structure, which allows for incorporating multiple strategies, followed by
describing the (pure) strategies, with different uses of sensing, memory, learning,
and plannings, in Sect. 3. Sect. 4 presents our experiments, and Sect. 5 is on
related work. We conclude with a summary and future directions in Sect. 6.

2 The Environment, Agent, and Task

Our environment is an N x N grid of N? cells, each cell identified by its (x, ).
There is a single agent, with limited sensing (to be described). The agent is in
exactly one cell of the grid at any time, and can execute a (move) action to change

8 One view in philosophy of biology posits that the organism (agent) itself, with its
capabilities and interactions, determines its own environment [29].
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Fig.1: (a) The agent and its environment. It is important to emphasize that the
agent does not see the whole grid, just the locations immediately adjacent to
its current location (partial observability). (b) Two knobs on task complexity:
barrier proportion and environment size (distance to goal). ¢) A 3rd knob on
task difficulty: rate of (barrier) change, from day to day.

its location by one cell. Time is broken into day and time tick: day 1,2, 3, - - -, and
within a day, time ticks t = 1,2,---. We focus on a simple closed-world: a cell
is in one of three states at any time: EMPTY, BARRIER, or FOOD. The
agent has four actions: move to a single adjacent cell without BARRIER, (UP,
DOWN, LEFT or RIGHT). With motion-noise probability p, for a low
p € [0,1] (e.g. p = 0.02) the environment picks an alternative noisy’ position,
and this includes staying in the same location and moving two steps forward
(Fig. 2(b)). An illegal action is one leading to a barrier and has no effect. The
agent cannot go off the grid (assume barriers). Upon action execution, time tick
is incremented.

Activity in the environment is broken into daily trips: in our experiments,
each day, the agent starts at the home base, (0,0), and the task of the agent
is to get to the food location, and save steps in doing so.? The state of a cell
is not changed within a day, and there is always exactly one food cell.!?, and
we ensure that the generated environments are such that a path to food exists.
Once the food is reached, the next day begins and the agent location is reset to
home s = (0,0). The food location does not change, i.e. the food is replenished,
from day to day, unless there is an explicit change in the food’s location (so the
strategy of trying to go back to the same place food was found tends to be useful).

9 In this work, we ignore costs of computation (in particular planning) costs (time or
energy), and assume any computation by the agent is performed within the budgeted
bounds.

10 One cell with food can reflect a region that has food in practice.
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Fig. 2: Basic actions and sensing: (a) 4 possible actions: LEFT(west), RIGHT,
UP, or DOWN. (b) In this example, with two barriers, the agent has two legal
actions (left and down). (¢) Motion noise, up to 6 possibilities: when intending to
go east (right), with some (noise) probability, the agent may end up in another
location: stay in the same cell, go up, or down, or left, or go two hops east. (d)
Sensing is also from a single adjacent cell (4 such).

In most experiments, from day to day, we change several barrier locations, but
keep the food in the same location (lower right corner).

Initially, on day 1, the agents doesn’t know where the food is, nor the size of
the grid, etc. (see the next section on limited sensing).!! On the first day, and
if (whenever) the food location changes, the task is more of a Search problem,
and strategies geared toward exploration are more successful. The agent could
remember certain aspects during each day to help it navigate and reach food in
that day and in future days. Thus in future days, the task may become more
of a path Planning problem, but only if the agent can remember the relevant
aspects. Each agent type uses a different mix of (one or more) basic strategies,
and different strategies involve different types of memory (e.g. short and long-
term) and sensing (Sect. 3).

From one day to next, several barriers may disappear and some new ones may
appear. In our experiments, we use the (barrier) change-rate to set this change:
a change-rate of 0.1 means that about 10% of the previous days barriers are
removed, and a similar number of new ones are added (overall barrier proportion
kept the same).

2.1 Limited Sensing (Observing, Localizing, ..)

Animals use a variety of sense modalities for navigation, such as hearing (echo-
location of bats), kinaesthesis, olfactory, and vision. In our work, we support a
few basic sense capabilities and different strategies may use a subset of them.
One available sense is looking one cell adjacent/around to get its state (FOOD,
BARRIER, EMPTY) (a visual radius of 1). For the greedy strategy, we assume

1 However, the strategies can be viewed as being designed for or having certain im-
plicit/encoded assumptions in order to succeed in this type of task, such as ’keeping
memories of what was observed at locations’ is useful.
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the agent has a sense akin to smell, telling the agent which of the 4 actions
reduces distance to goal.'? All strategies know which actions are legal.

The more sophisticated strategies require localization: access to an estimate
(Z,9) of the true current location (z,y). Our agent does simple path integra-
tion from its home (0,0), keeping two counters (sums), one for the horizontal,
another for the vertical dimension. A RIGHT increments the horizontal counter,
a LEFT decrements it (e.g. (0,0) becomes (—1,0)), and so on.

Note that with a positive motion-noise p, the inaccuracy of the path-integration
estimate (Z, §) during the day is expected to grow with time tick ¢ and in general
the farther the agent is from its home base (starting point).

Dimensions of Difficulty. In some experiments we change the barrier por-
tion or the grid size to change the difficulty of the task. For instance, a higher
barrier portion means longer and more intricate paths to goals, and remembering
where barriers are or the successful past paths can become more useful. On the
other hand, increasing the barrier change-rate and motion noise can counteract
the benefits of memory.

3 Strategies and Agents

An (autonomous) agent is a system that senses and acts so that it reaches or
satisfactorily maintains certain internal states, which is reaching food for us (see
Franklin et al [15,14] for a good review of “agent” meaning). Even in our fairly
simple task, we have found that stand-alone pure strategies rarely work (in a
plausible diversity of environments). There is much evidence that organisms in
nature use different strategies as well (eg allocentric, or map-based, vs sequential
egocentric), and as a function of perception (not just time) [18,21]. Thus we
also explore composite agents in our experiments. As we present different (pure)
strategies below, we touch on their strengths and weaknesses. Fig. 3 shows the
basic loops of our agent, involving preparations, sensing and action execution,
which we cover next.

3.1 Round-Robin Activation with Progressive Time Budgets

This round-robin setup makes it convenient to plug in various strategies and
compare different combinations. At any timepoint, our composite agent executes
the action selected by exactly one strategy, its active strategy. The agent sticks
to its active strategy until its failure, or when its allotted time is up, in which case
the agent moves to the next strategy on the list of strategies (user/experimenter
specified), wrapping around in a round-robin manner, until food is reached (Fig.
3). For each strategy, the user can optionally specify a time budget. The agent
begins each day with the given initial budgets. A strategy’s budget, if specified,

12 We do not model noise in the greedy direction (and one could raise such noise as the
distance to food grows). On the other hand, smell can be more powerful and yield
more information, such as the rough distance to goal (we do not model that either).
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Fig.3: (left) The control loop of a (multi-strategy) agent, generating its daily
activity: the agent executes all strategies’ pre and post functions, but uses exactly
one, active, strategy that provides it with choice of action. (right) Our agent
changes its active strategy at times, via a round-robin priority-ordered way: Each
day the agent begins with using the first strategy. It moves to the next strategy
(wrapping around), when current active strategy fails, or the strategy’s time is
up, until goal is reached (or all strategies fail). The allotted times (if any) are
doubled, within a day, each time it starts the list over (Sect. 3.1).

is doubled, every time that strategy becomes active again in that day.'® This
is a simple low-memory way to keep the agent flexible, but using feedback and
learning when, e.g. as a function of perception, and how much to use a given
strategy is a future direction.

3.2 Interfacing with Several Strategies

In addition to the mandatory action selection function, a strategy can implement
4 other optional functions: pre-action-selection, post-action-selection, prepare-
for-new-day (e.g. reset memories), and upon-reward. These allow the agent to
provide information to the strategies, such as what cell is visited at current time
and which action was selected. They also allow the strategies to store or do
certain computations (e.g. memory consolidation). The action selection function
is invoked only for the active strategy, but these four are invoked for all the
strategies of the agent (once a day for the last two).

It is simple to incorporate bypassing, or support a subsumption architecture
[5], in the above organization. For instance, if the food is seen, e.g. in the pre-
action selection function, just go to it, ignoring the active strategy (which could
be following a plan blindly), and execute the post-action selection (this bypassing
lowers the number of steps somewhat).!* We next describe the pure strategies
we experiment with, roughly in order of increasing complexity. See also Fig. 4
which presents a summary of each strategy’s requirements (localizing, memory,
etc). The longer paper describes the strategies in further detail [26].

13 If a strategy does not have a failure mode (e.g. Random) and has no time budget,
once that strategy becomes active, it remains active for the rest of that day.

14 In this specific scenario, the "lower level’ immediacy bypasses the "higher level’, while
“subsuming” may imply the higher-level overriding the lower level.
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3.3 The Strategies

Random. This baseline strategy returns a legal move picked uniformly at ran-
dom (up to four possibilities). It requires no memory, but is highly wasteful. A
small change, which we call Biased, is a substantial improvement (Table 1).
Biased does not take a ’step back’” when possible, picking uniformly at random
from the remaining legal actions (e.g. if LEFT was executed at ¢t — 1, RIGHT is
not selected at ¢, unless it’s the only legal action). This variant requires a bit of
memory.

Greedy. The Greedy strategy has access to the action(s) that lead to low-
ering the distance to the goal (up to 2 such), and picks one such at random.
Greedy can fail, i.e. barrier(s) can block those directions. Thus it cannot be used
alone. Like Random, Greedy does not need any of the pre and post functions.
A variant, memory-greedy, does not require a smell direction but requires
the memory of the food location from the day before. If food is fairly static, it
performs similar to greedy except when Search is required (e.g. 1st day).

Least-Visited. This is the first strategy that makes extensive use of what
could be viewed as a type of episodic memory (medium-term, for a single day),
which also requires localization. In its prepare-for-the-day function, it allocates
an empty mapping, of location to visited count, and in its pre-action-selection
function, increments the visit-count of its current location (location estimate,
(Z,9), via path-integration of Sect. 2.1). Whenever it is the active strategy, it
picks an action that takes it to the cell with lowest visit-count, ties broken at
random. At the expense of the memory requirement, this is a more efficient
explorer, when Search is needed, compared to Random.!®

Path. This strategy remembers yesterday’s path, in the form of a mapping,
from visited location s, (Z,7), to last action taken (selected by any strategy)
at s, via the post-action-selection function. When there is no change (or no
new barriers and food hasn’t changed), and no motion noise, the remembered
path yields a successful path for the next day. Otherwise, there can be a few
execution-time failure cases (in which case the agent should change strategy):
(1) The path (mapping) returns an illegal action (e.g. due to new barrier) (2)
Goal is reached, but no food (e.g. due to localization error) (3) Current location
is not in the map (e.g. from use of other strategies).

Path is akin to model-free RL solutions in that the path can be viewed as
a policy, mapping locations (state features) to actions (also, akin to sequential
egocentric [18]). This strategy works for only one goal, and if there are multiple
goals or destinations, the agent may need to learn different paths (different
mappings, or functions), which can become both sample and space inefficient.
We also experimented with DQN [31], which is model-free NN approach that

15 Many organisms appear to have developed so-called Levy walks and jump strate-
gies to more efficiently search a large expanse in finding clusters of food [54].
LeastVisited in conjunction with planning (ProbMap) could be used for such search
as well.
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strategy |localization|smell|within day|multi-day|planning
J memory | memory
Random — — — — — Every day is a brand new day!
Greedy - v — _ — T (forgets experience)
mem. Greedy v _ _ v _ Records/uses some
LeastVisited v - v - - memories, such as
Path v — v v — yesterday’s food location.
ProbMap v - v v v
DQN depends - - v -

Fig.4: A summary of what different strategies use or require (mainly of the agent,
but also of the environment). Greedy requires the smell ("gradient’) direction.
Localization, ie availability of the (Z, ) estimate of the current location for the
agent, need not be perfect (Sect. 2.1). DQN’s long-term memory is in its neural-
network weights, and its input vector includes current (Z, §) in our experiments.

has been very successful in fully-observable (ATARI) game playing. We provided
basic features (the surround) and location to the network (Sect. 4.2).

ProbMap. This (allocentric) strategy records and keeps updating memories
of the barriers and food, and uses such memories to make (in effect) a map, that
includes a start and goal, and plans a path to the goal. The output of the planning
is same as for Path (a mapping from location to action). This strategy is the
most elaborate and expensive in terms of the compute and control infrastructure
it requires, but is the most powerful and flexible of the strategies, as the start
and goal locations need not be fixed.

Two types of memories are maintained: (1) episodic (fast memory) (2) sta-
tistical (slow learning). Memories have different uses [30], but for our task,
they are used to figure out where food and barriers could be, in particular, for
planning. An episodic memory is an explicit record (tuple) of time (day and
tick), location (via path-integration), and the object observed (EMPTY,,...). For
instance, the tuple < (3,5), (0, —1), BARRIER> would mean a barrier was ob-
served on day 3, tick 5, location (Z,y) = (0,—1). Each location is used as a key
pointing to a list of such memory records (a hashmap). At every time point,
the strategy updates these lists for each of the adjacent four locations (in the
pre-action-selection). Such a memory could be used directly for planning. For
instance, an agent could use only the latest memory (drop or ignore older ones).
However, by learning the prediction distributions and performance, i.e. slow
learning, one can do better.

Individual episodic memories have a sparsity problem: they don’t occur enough
to provide probabilities. The strategy converts them into memory types by
dropping the location. Thus the question becomes 'how does a barrier seen yes-
terday predict (same location) for today?’ (and not ’how does barrier at specific
location (1,2) predict..?”). At every time point, ProbMap converts its existing
episodic memories into memory types, and updates their 3-element distributions
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and logloss performance, using EMA and other (window-based) sparse moving
average techniques [24].

When planning, ProbMap collects locations that have sufficiently high food
probability, and picks one at random. For barriers, for each location, memory-
types that have the best logloss provide barrier probabilities, and it samples
barrier locations using them. It does the planning, using A* search.

Two types of failures are possible. If there is an execution time failure (e.g. new
barrier) ProbMap replans. In case of plan-time failure, e.g. no food (goal) on the
first day, the agent needs to change strategy.

Oracle. This strategy is meant to provide a reference point, i.e. the lowest
number of steps on a given day and environment. The strategy always has the
complete up-to-date map (of barriers and food), as well as the true location of
the agent, and plans accordingly (similar to ProbMap, uses A* for planning)

A Discussion of Types of Memory. There are many ways to classify mem-
ories, such as episodic, semantic, associative, working, short-term vs. long-term,
internal vs. external (e.g. using notebooks), biographical, and so on. We noted
that Biased uses a little memory, and control strategies such as round-robin and
progressive need some memory for their operation. One aspect that distinguishes
these from the memory used by LeastVisited , Path, and ProbMap is that the
latters’ episodic memory requirement grows in general with experience or the
history of the agent (with the spatial expanse explored and/or over time), while
the former (often control memory) is fixed (constant or near constant).

4 Experiments

We used PYGAME (www.pygame.org) to develop the environments and to vi-
sualize. We will make the code available on GitHub. Our experiments involve 3
nested loops: With an outerloop of k; trials (e.g. 50), we generate initial environ-
ments (grids with certain barrier proportion). In an inner loop of ko iterations
(e.g. ko=20) we generate days: the initial environment is changed somewhat day
after day (when change-rate > 0). Finally, within a day, the experiment contin-
ues for k3 steps until the agent, starting from home, reaches food: k3 depends on
agent efficacy. We average k3 over days and then over the grids, but also report
medians and maximums too, see Table 1. For instance max-max refers to taking
the maximum of the (k3) steps over all the days and grids. Each row of the table
took seconds to complete on a Mac laptop.

For the composite agents, we used no budget on Greedy, Path, and ProbMap
(keep using it until failure), and (initial) budget of 1 on Random and LeastVisited
(doubling each time the strategy becomes active again in that day) (see Sect.
3.1). Greedy+Biased means start with Greedy then Biased in round-robin fash-
ion. The agent begins at the center of the grid, and the food is at lower right
(unless otherwise specified).This is on 15x15 grids, thus a good path should
be about 15 steps long, modulo motion noise and barriers, and the Oracle s
performance reflects that (Table 1).
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mean-mean|med-mean|med-med |max-mean |max-max
Random 1965 £617 1815 1200 3.5k 30K
Biased 536 £163 479 329 1056 5.7k
Greedy—+Biased 157 £102 134 24 460 4.4k
LeastVisited 250 £49 252 198 395 1.5k
Greedy+LeastVisited 87 £52 73 22 242 1.7k
Path+Least Visited 224 +50 227 163 375 2k
ProbMap+LeastVisited | 59 £38 49 23 237 1.3k
Oracle (impractical) 15.5 £1.1 15.2 14 20.2 51

Table 1: Performance, the number of steps to goal, of a range of strategies,
from little or no memory, to extensive memory and planning. ProbMap overall
does the best (Oracle gives the minimum in the impractical case of complete
knowledge). Experimental settings: 15x15 grids, 50 environments, 20 days each,
0.3 barrier-proportion, 0.1 change-rate, and 0.02 motion noise. Mean-mean is
average number of steps over the 20 days and then averaged over the 50 initial
environments, while med-mean is the mean of the (50) medians.
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Fig. 5: Efficiency gains, ProbMap+LeastVisited compared to Greedy+Biased, 50
grids, 20 days, (a) When increasing barrier-proportion ratio, for different change
rates (on 15x15, 0 motion-noise). (b) When increasing dimensions (from 15x15
to 50x50), keeping barrier proportion at 0.3 (over 30x gains as size increases).

4.1 Memory Helps!

We see that as we add memory, the performances, specially the worst cases, on
very bad days (max-max), improve substantially. Biased (with a bit of memory,
Sect. 3.3) does substantially better than Random.

The best of memory strategies substantially beats Greedy-+Biased, and in
particular we get increased robustness. If we ignore the first day or so (the
Search days), this gap grows (mean-mean of ProbMap improves to 50). Note
that the expected performance of Greedy+Biased can not change from day to
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day. The best combination (of smell-direction capability and memory),
ProbMap+Greedy+Least Visited gets a mean of 40 (not shown in the table).

The Path variant trails the Greedy variants in this setting. If we lower the
motion noise and change rates to 0, Path gets a mean-mean of 39 beating 70
for Greedy+LeastVisited (and ProbMap gets 18). ProbMap is more robust to
change compared to Path. Fig. 5 shows that when grid size or barrier portion dif-
ficulties are raised, with low motion-noise, the relative gain of ProbMap compared
to Greedy grows, to over 30x (substantial gains, as distance grows, under no
noise). Fig. 6 shows that motion noise has the reverse effect, and at some point,
Greedy can outperform, and increasing the grid-size can compound this.

Fig. 7 shows that even though the performance of ProbMap+LeastVisited may
appear to plateau, the agent needs to keep remembering and learning under (bar-
rier) change to preserve its performance.

4.2 Experiments with a Model-Free NN-Based Agent

We also experimented with DQN [31], a model-free RL technique which per-
formed well on a range of (fully-observable) ATARI games. The agent is given
the location, and the surrounding barrier and food information (radius 1, as
other agents). On 15x15 grids, and no barriers (and no change in barriers and
no motion noise), a learning rate of 0.002 works best (compared to 0.01 and
0.001),'% and yields a mean of 80 (median 40) for 20 days, and mean of 30 after
50 days, and 20 for 200 days. That is, eventually, the agent learns a good path.
However, as we increase barrier proportion, e.g. to 0.1, the learning becomes
unstable, and on some environments the number of steps even after several days
is in the 10s of thousands, to extent that we could not often run such on 20 en-
vironments. If we set the change rate to 0.1, the fraction of environments when
the agent hangs (has many days with say over 50k steps) goes up. The DQN
agent needs both to find the reward, and to pass that information gradually
to other cells nearby, and implicitly learn that barriers block. All this, reward
propagation, takes times (many steps and days), and if there is change (in goal
or barriers), issues of learning stability arise.

4.3 Additional Experiments and Discussion

When the goal location oscillates, eg on the lower right corner on the even days
and on the upper right corner on the odd days, the ProbMap-+LeastVisited agent
remembers the goal pattern, after a handful of days [26] (supporting predictive
memory-type in ProbMap enables this capability). We hope to do further longer
‘trajectory’ experiments, i.e. concatenating environments with different char-
acteristics (e.g. with different barrier portions, goal locations, or motion noise
parameters), and further verify the speed of adaptation.

16 Other parameters: batch size of 5, gamma of 0.9, eps_start of 0.9, end of 0.05 with
decay of 10. We also experimented with changing those parameters.
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ratios of steps taken, greedy to ProbMap agents, 15x15 ratios of steps taken, Greedy to ProbMap agents
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Fig.6: As motion-noise is increased, ProbMap+LeastVisited loses its advantage
over Greedy+Biased. Left: on a fixed 15x15 grid (barrier proportion 0.3), Right:
as we increase the grid size (distance to goal). However, with 0 motion-noise, the
performance advantage grows with distance (as in Fig. 5).

We note that heading back from food location to home is a similar symmetric
problem, and for instance an agent using a map could easily solve that by setting
start and goal nodes appropriately when planning.!” We expect that the basic
lessons learned in comparing various strategies generalize. A good general future
direction is studying agents that may have to perform multiple tasks.

We have conducted a range of additional experiments: on efficacy of pro-
gressive time-budgets (compared to a constant allotment) and the effects and
benefits of various parts of ProbMap (such as limiting the memory kept to one
day, or making memories deterministic), the number of replannings needed, how
memory consumption expands (e.g. for ProbMap), and so on. These experiments
will be reported in the longer paper [26].

5 Related Work

Our work is related to diverse tracks of research, including autonomous agents,
the nature and use of memory (in biological and artificial systems), reinforcement
learning (RL), planning, and robotics. We focus on closely related work that was
not discussed earlier.

Two broad behaviors or strategies have been identified in computational
neuroscience: model-based (e.g. map making, and goal oriented) vs. habitual in-
strumental behavior (corresponding to our Path strategy and typical model-free
RL): The evidence and the relative strengths and weaknesses are discussed in
[10] (such as the simplicity of the habitual vs. the flexibility but the compu-
tational requirements of goal-oriented model-based behavior). Human memory

17 For other agents, we may need to make further assumptions. For instance, for the
greedy (smell) agent, one could assume that home has its own smell.
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Fig. 7: Continual learning (memory updates) vs freezing memory (i.e. stopping
updates after day 10). Same setting for Table 1 except for k1=150 grids. Daily
steps, means (left) and medians (right), as a function of day (each point is the
mean or median, 150 values, of number of steps taken to food on that day).

representations are complex and are sufficiently flexible to have a diversity of
uses, e.g. not just for spatial maps, but, for instance, also for the more general
cognitive graphs [35,36]. Learning structured representations, that would find
repeated use, may also be foundational for perception [25].

In a partially observed (limited sensing) task [50], the authors study how
(predictive) memory and RL techniques could be put together in a perceptu-
ally realistic navigation setting, showing promising results that the agent using
predictive memory was substantially more successful than plain model-free RL
agents (e.g. remembering and finding the way to goal when teleported), but the
number of episodes (environment steps) remained considerable (e.g. 100s of thou-
sand or millions) and generalization ability remains unclear. In a recent study
[49], the authors tackle the tricky question of LLM generalization, and develop
novel evaluation techniques (e.g. querying under small perturbations) for a few
tasks and, for a navigation task (in Manhatten, NY), they present evidence that
the (transformer) generative network does not learn a systematic (’coherent’)
map from the sequence training data, e.g. when sequences are purtubed from
the shortest paths used for training.'®

Change, in machine learning and RL, continues to be studied and remains a
challenge, and techniques in areas such as continual learning, transfer learning,
distribution shift, meta learning, lifelong learning, lifelong RL, and open-ended
learning in robotics attempt to address the various aspects of the problem [47, 39,
34, 4,46, 38]. The issue of environment change facing animals was also studied in

18 The perturbation to action sequences, by which the authors study network perfor-
mance in one of their experiments, is akin to our random barrier location changes,
and to a lesser extent to our motion noise: in their work, the agent (the transformer)
is given the alternative move taken.
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[55] and the authors propose that animals achieve change detection and change
of strategy in part through counter-factual reasoning (as RL does not completely
explain the observed speed of change in behavior). See also work on replay [13].
In the area of simultaneous localization and mapping (SLAM) for robotics, richer
perception and change is also identified as a future area of research [7].

Recent work, motivated by the possibility of map construction by humans,
experiments on subjects as well as performs computational modeling providing
evidence that humans build map structures [40] consistent with a Bayesian ap-
proach, and furthermore, such maps help planning via partially observed Markov
decision processes (POMDPs), in a continual (re)planning fashion. Our study fo-
cuses on how repeated change and uncertainty could help or limit the benefits of
learning a map, in a simple daily agentic foraging task, and the environment and
interaction durations are parameterized (attributes such as grid size and uncer-
tainty characteristics can be changed substantially) and we compare a variety of
strategies (pure-sensing or smell-based and path-memory techniques).

6 Summary and Future Directions

The world is large, uncertain, and changing, and an agent has indirect limited
access to it. We focused on agents that can remember and learn fast (learning
along a lifetime, keeping pace with change), and assumed that certain aspects of
the strategies that the agent deploys are hardwired, while other aspects can be
continually tuned and learned. We showed that an agent with extensive memory
and computing (planning), with appropriate algorithms, can substantially out-
perform a greedy-smell agent, or extend the greedy’s reach, as long as change
and uncertainty, in particular in localization, are not too large.

In future work, we hope to reduce the 'hardwired assumptions’ we made.
For instance, how could an agent come to know what to remember (and how to
use it), and how does it 'carve’ and granularize its spatial and temporal inputs?
Related to this is support for richer perception as well as open worlds: for instance
learning and using various environmental regularities in a sample efficient and
continually adaptable and cumulative manner.

Acknowledgments. Many thanks to the members of our weekly SAIRG
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discussions, pointers, and suggestions, and to the reviewers and BICA organizers.
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